Irational la puterea irational sa fie rational

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Irational la puterea irational sa fie rational

Post by Alin Galatan »

Demonstrati ca exista doua numere irationale \( a,b \) astfel ca \( a^b \) sa fie rational.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Consideram \( {\sqrt{2}}^{\sqrt{2} \). Acest numar este sau rational sau irational. Daca este rational problema este demonstrata, pentru ca luam \( a=\sqrt{2} \) si \( b=\sqrt{2} \). Daca este irational vom lua \( a={\sqrt{2}}^{\sqrt{2} \) si \( b=\sqrt{2} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

Dar tu ce crezi de fapt despre \( {\sqrt{2}}^{\sqrt{2} \): este rational sau irational? :lol:
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

De fapt, chiar transcendent, cf. articolului de aici. Insa pentru partea ca este irational, poate ca exista vreo metoda mai elementara în acest caz.
O alta idee ar fi se ne uitam la, e.g., \( 2^{\log_29} = 9 \), de unde \( (\sqrt{2})^{\log_29} = 3 \). Dar se observa usor ca \( \log_29 \) este irational.

PS. Bineînteles ca solutia din postul de mai sus este cea indicata pt. clasa a VII-a.
Life is complex: it has real and imaginary components.
Post Reply

Return to “Clasa a VIII-a”