Inegalitate usurica

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate usurica

Post by Claudiu Mindrila »

Fie numerele reale \( a_{1},\ a_{2},\ldots,\ a_{n}>1 \) ce satisfac relatia \( \sum_{i=1}^{n}\frac{1}{a_{i}^{2}-1}=1 \). Demonstrati ca \( \sum_{i=1}^{n}\frac{1}{a_{i}+1}\le\frac{n}{\sqrt{n+1}+1} \).

Andrei Razvan Baleanu
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( LHS^2=\(\sum\sqrt{\frac{a_i-1}{a_i+1}}\cdot\frac{1}{\sqrt{a_i^2-1}}\)^2\le\(\sum\frac{a_i-1}{a_i+1}\)\(\sum\frac{1}{a_i^2+1}\)=n-2\cdot LHS \)
Post Reply

Return to “Clasa a IX-a”