Fie numerele reale \( a_{1},\ a_{2},\ldots,\ a_{n}>1 \) ce satisfac relatia \( \sum_{i=1}^{n}\frac{1}{a_{i}^{2}-1}=1 \). Demonstrati ca \( \sum_{i=1}^{n}\frac{1}{a_{i}+1}\le\frac{n}{\sqrt{n+1}+1} \).
Andrei Razvan Baleanu
Inegalitate usurica
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate usurica
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)