Concursul "Nicolae Coculescu" 2009, problema 2

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Concursul "Nicolae Coculescu" 2009, problema 2

Post by Laurentiu Tucaa »

Sa se calculeze \( \int \frac{x}{\sqrt{x}+\sqrt{1-x}},x\in(0,1) \).


Florian Dumitrel
mihai miculita
Pitagora
Posts: 93
Joined: Mon Nov 12, 2007 7:51 pm
Location: Oradea, Romania

Post by mihai miculita »

\( \mbox{Facand substitutia: }x=\sin^2y;\ y \in\left(0;\frac{\pi}{2}\right) \mbox{, integrala se reduce la: }2.\int{\frac{\sin^3y.\cos y .dy}{\sin y+\cos y}};\\
\mbox{iar aceasta integrala cu substitutia: }tg {\frac{y}{2}}=t;\ t\in\left(0;\frac{\pi}{2}\right)\mbox{, se reduce la integrala unei functii rationale.}

\)
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Sau mai simplu: amplificand cu conjugata se reduce la calculul unei integrale mult mai simple.
Post Reply

Return to “Analiza matematica”