Sa se calculeze \( \int \frac{x}{\sqrt{x}+\sqrt{1-x}},x\in(0,1) \).
Florian Dumitrel
Concursul "Nicolae Coculescu" 2009, problema 2
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
-
mihai miculita
- Pitagora
- Posts: 93
- Joined: Mon Nov 12, 2007 7:51 pm
- Location: Oradea, Romania
\( \mbox{Facand substitutia: }x=\sin^2y;\ y \in\left(0;\frac{\pi}{2}\right) \mbox{, integrala se reduce la: }2.\int{\frac{\sin^3y.\cos y .dy}{\sin y+\cos y}};\\
\mbox{iar aceasta integrala cu substitutia: }tg {\frac{y}{2}}=t;\ t\in\left(0;\frac{\pi}{2}\right)\mbox{, se reduce la integrala unei functii rationale.}
\)
\mbox{iar aceasta integrala cu substitutia: }tg {\frac{y}{2}}=t;\ t\in\left(0;\frac{\pi}{2}\right)\mbox{, se reduce la integrala unei functii rationale.}
\)
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti