Minim si maxim de |z|
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Minim si maxim de |z|
Fie \( a>0 \) si \( z\in\mathbb{C}^{\ast} \) pentru care \( \left|z+\frac 1z \right|=a \) . Sa se determine valorile exteme ale lui \( |z| \) .
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Re: Minim si maxim de |z|
\( a^2=|z+1/z|^2=\frac{|z|^4+1-2|z|^2+4(Rez)^2}{|z|^2} \) de unde
\( |z|^4+1-(a^2+2)|z|^2=-4(Rez)^2\leq0 \) .Dupa efectuarea calculelor obtin ca \( |z| \in [ \frac{-a+\sqrt{a^2+4}}{2} , \frac{a+\sqrt{a^2+4}}{2}] \)
\( |z|^4+1-(a^2+2)|z|^2=-4(Rez)^2\leq0 \) .Dupa efectuarea calculelor obtin ca \( |z| \in [ \frac{-a+\sqrt{a^2+4}}{2} , \frac{a+\sqrt{a^2+4}}{2}] \)