Minim si maxim de |z|

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Minim si maxim de |z|

Post by Mateescu Constantin »

Fie \( a>0 \) si \( z\in\mathbb{C}^{\ast} \) pentru care \( \left|z+\frac 1z \right|=a \) . Sa se determine valorile exteme ale lui \( |z| \) .
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Re: Minim si maxim de |z|

Post by opincariumihai »

\( a^2=|z+1/z|^2=\frac{|z|^4+1-2|z|^2+4(Rez)^2}{|z|^2} \) de unde
\( |z|^4+1-(a^2+2)|z|^2=-4(Rez)^2\leq0 \) .Dupa efectuarea calculelor obtin ca \( |z| \in [ \frac{-a+\sqrt{a^2+4}}{2} , \frac{a+\sqrt{a^2+4}}{2}] \)
Post Reply

Return to “Clasa a X-a”