OM 1997, Ungaria

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

OM 1997, Ungaria

Post by Mateescu Constantin »

Fie \( \triangle ABC,\ R \) raza cercului circumscris si \( F \) mijlocul lui \( [GH] \) (notatii obisnuite).

Aratati ca \( AF^2+BF^2+CF^2=3R^2. \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se foloseste relatia lui Leibniz:

\( MA^2+MB^2+MC^2=3MG^2+GA^2+GB^2+GC^2 \)

pentru orice triunghi ABC cu centrul de greutate G si orice punct M din planul triunghiului.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Notam puterea \( p_w(X) \) a punctului \( X \) in raport cu cercul circumscris \( w=C(O,R) \) . Stim ca \( HF=FG=GO \) ,

\( p_w(G)=GO^2-R^2 \) si pentru orice punct \( M \) exista relatia Leibniz : \( \sum MA^2=3\cdot \left[MG^2-p_w(G)\right] \) .
Pentru \( M:=F \) , obtinem \( \sum FA^2=3\cdot \left[FG^2-p_w(G)\right]=3\cdot\left[GO^2-p_w(G)\right] \) , adica \( \sum FA^2=3R^2 \) .
Last edited by Virgil Nicula on Sat Aug 01, 2009 3:27 am, edited 2 times in total.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Solutie vectoriala:

Fie \( O \) centrul cercului circumscris triunghiului.

Avem \( \vec{OG}=\frac{\vec{OH}}{3}\ \Longrightarrow \vec{OF}=\frac{\vec{OG}+\vec{OH}}{2}=\frac{2\vec{OH}}{3} \)

Din \( \vec{OH}=\vec{OA}+\vec{OB}+\vec{OC} \) (relatia lui Sylvester) \( \Longrightarrow\ 3\vec{OF}=2(\vec{OA}+\vec{OB}+\vec{OC})\ (*) \)

\( AF^2+BF^2+CF^2=\vec{AF}\cdot\vec{AF}+\vec{BF}\cdot\vec{BF}+\vec{CF}\cdot\vec{CF}=(\vec{OF}-\vec{OA})^2+(\vec{OF}-\vec{OA})^2+(\vec{OF}-\vec{OC})^2= \)
\( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\vec{OA}^2+\vec{OB}^2+\vec{OC}^2-2\vec{OF}(\vec{OA}+\vec{OB}+\vec{OC})+3\vec{OF}^2=^{(*)}3R^2 \).
Post Reply

Return to “Clasa a IX-a”