Fie \( \triangle ABC,\ R \) raza cercului circumscris si \( F \) mijlocul lui \( [GH] \) (notatii obisnuite).
Aratati ca \( AF^2+BF^2+CF^2=3R^2. \)
OM 1997, Ungaria
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Notam puterea \( p_w(X) \) a punctului \( X \) in raport cu cercul circumscris \( w=C(O,R) \) . Stim ca \( HF=FG=GO \) ,
\( p_w(G)=GO^2-R^2 \) si pentru orice punct \( M \) exista relatia Leibniz : \( \sum MA^2=3\cdot \left[MG^2-p_w(G)\right] \) .
Pentru \( M:=F \) , obtinem \( \sum FA^2=3\cdot \left[FG^2-p_w(G)\right]=3\cdot\left[GO^2-p_w(G)\right] \) , adica \( \sum FA^2=3R^2 \) .
\( p_w(G)=GO^2-R^2 \) si pentru orice punct \( M \) exista relatia Leibniz : \( \sum MA^2=3\cdot \left[MG^2-p_w(G)\right] \) .
Pentru \( M:=F \) , obtinem \( \sum FA^2=3\cdot \left[FG^2-p_w(G)\right]=3\cdot\left[GO^2-p_w(G)\right] \) , adica \( \sum FA^2=3R^2 \) .
Last edited by Virgil Nicula on Sat Aug 01, 2009 3:27 am, edited 2 times in total.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Solutie vectoriala:
Fie \( O \) centrul cercului circumscris triunghiului.
Avem \( \vec{OG}=\frac{\vec{OH}}{3}\ \Longrightarrow \vec{OF}=\frac{\vec{OG}+\vec{OH}}{2}=\frac{2\vec{OH}}{3} \)
Din \( \vec{OH}=\vec{OA}+\vec{OB}+\vec{OC} \) (relatia lui Sylvester) \( \Longrightarrow\ 3\vec{OF}=2(\vec{OA}+\vec{OB}+\vec{OC})\ (*) \)
\( AF^2+BF^2+CF^2=\vec{AF}\cdot\vec{AF}+\vec{BF}\cdot\vec{BF}+\vec{CF}\cdot\vec{CF}=(\vec{OF}-\vec{OA})^2+(\vec{OF}-\vec{OA})^2+(\vec{OF}-\vec{OC})^2= \)
\( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\vec{OA}^2+\vec{OB}^2+\vec{OC}^2-2\vec{OF}(\vec{OA}+\vec{OB}+\vec{OC})+3\vec{OF}^2=^{(*)}3R^2 \).
Fie \( O \) centrul cercului circumscris triunghiului.
Avem \( \vec{OG}=\frac{\vec{OH}}{3}\ \Longrightarrow \vec{OF}=\frac{\vec{OG}+\vec{OH}}{2}=\frac{2\vec{OH}}{3} \)
Din \( \vec{OH}=\vec{OA}+\vec{OB}+\vec{OC} \) (relatia lui Sylvester) \( \Longrightarrow\ 3\vec{OF}=2(\vec{OA}+\vec{OB}+\vec{OC})\ (*) \)
\( AF^2+BF^2+CF^2=\vec{AF}\cdot\vec{AF}+\vec{BF}\cdot\vec{BF}+\vec{CF}\cdot\vec{CF}=(\vec{OF}-\vec{OA})^2+(\vec{OF}-\vec{OA})^2+(\vec{OF}-\vec{OC})^2= \)
\( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\vec{OA}^2+\vec{OB}^2+\vec{OC}^2-2\vec{OF}(\vec{OA}+\vec{OB}+\vec{OC})+3\vec{OF}^2=^{(*)}3R^2 \).