Determinanti de matrici cu elemente 0 si 1

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Determinanti de matrici cu elemente 0 si 1

Post by Beniamin Bogosel »

Aratati ca pentru orice \( n\in \mathbb{N} \) exista \( m \in \mathbb{N} \) si \( A=(x_{ij}) \in \mathcal{M}_n(\mathbb{R}) \) astfel incat \( \det(A)=n \) si \( a_{ij} \in \{0,1\} \) pentru orice \( i,j \in \{1,2,...,m\} \).

Admitere SNSB 2009
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Problema mi se pare destul de usoara daca ne gandim, pentru un \( n \) natural, la matricea de ordin \( n+1 \) care are 0 pe diagonala principala si 1 in rest. Determinantul acestei matrici este egal cu \( (-1)^n n \). Eventual interschimband doua linii sau coloane, gasim o matrice cu proprietatea ceruta in enunt.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Cristi
Euclid
Posts: 19
Joined: Wed Nov 07, 2007 10:47 pm

Post by Cristi »

Eu am facut-o prin inductie: \( A_1=\left( \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right), A_2=\left( \begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right) , A_{n+1}=\left( \begin{array}{ccccc} 1 & 1 & 0 & {...} & 0 \\ 0 & {} \\ {...} & {} & A_n \\ 1 \\ 0 \\ \end{array} \right) \) pentru n par si \( A_{n+1}=\left( \begin{array}{ccccc} 1 & 1 & 0 & {...} & 0 \\ 0 & {} \\ {...} & {} & A_n \\ 0 \\ 1 \\ \end{array} \right) \) pentru n impar.
Post Reply

Return to “Algebra liniara”