Aratati ca pentru orice \( n\in \mathbb{N} \) exista \( m \in \mathbb{N} \) si \( A=(x_{ij}) \in \mathcal{M}_n(\mathbb{R}) \) astfel incat \( \det(A)=n \) si \( a_{ij} \in \{0,1\} \) pentru orice \( i,j \in \{1,2,...,m\} \).
Admitere SNSB 2009
Determinanti de matrici cu elemente 0 si 1
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Determinanti de matrici cu elemente 0 si 1
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Problema mi se pare destul de usoara daca ne gandim, pentru un \( n \) natural, la matricea de ordin \( n+1 \) care are 0 pe diagonala principala si 1 in rest. Determinantul acestei matrici este egal cu \( (-1)^n n \). Eventual interschimband doua linii sau coloane, gasim o matrice cu proprietatea ceruta in enunt.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Eu am facut-o prin inductie: \( A_1=\left( \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right), A_2=\left( \begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right) , A_{n+1}=\left( \begin{array}{ccccc} 1 & 1 & 0 & {...} & 0 \\ 0 & {} \\ {...} & {} & A_n \\ 1 \\ 0 \\ \end{array} \right) \) pentru n par si \( A_{n+1}=\left( \begin{array}{ccccc} 1 & 1 & 0 & {...} & 0 \\ 0 & {} \\ {...} & {} & A_n \\ 0 \\ 1 \\ \end{array} \right) \) pentru n impar.