Inegalitate cu numere complexe

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Inegalitate cu numere complexe

Post by opincariumihai »

Aratati ca oricare ar fi numerele complexe a, b, c are loc inegalitatea
\( |a|+|b|+|c|\leq|a+b+c|+|a-b|+|b-c|+|c-a| \)

Mihai Opincariu G.M.B. 2000
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Folosind inegalitatile cunoscute cu modul avem:
\( |a+b|+|a-b|\ge |a+b+a-b|=2|a| \)
\( |a+b|+|a-b|\ge |a+b-(a-b)|=2|b| \)

\( \Longrightarrow |a+b|+|a-b|\ge |a|+|b| \)

Sumand si inegalitatile analoage obtinem:

\( |a+b|+|b+c|+|c+a|+|a-b|+|b-c|+|c-a|\ge 2(|a|+|b|+|c|) \ (1) \)

Din inegalitatea lui Hlawka avem:

\( |a+b+c|+|a|+|b|+|c|\ge |a+b|+|b+c|+|c+a|\ (2) \)

Adunand relatiile \( (1) \) si \( (2) \) obtinem concluzia.
Post Reply

Return to “Clasa a X-a”