Aratati ca oricare ar fi numerele complexe a, b, c are loc inegalitatea
\( |a|+|b|+|c|\leq|a+b+c|+|a-b|+|b-c|+|c-a| \)
Mihai Opincariu G.M.B. 2000
Inegalitate cu numere complexe
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Folosind inegalitatile cunoscute cu modul avem:
\( |a+b|+|a-b|\ge |a+b+a-b|=2|a| \)
\( |a+b|+|a-b|\ge |a+b-(a-b)|=2|b| \)
\( \Longrightarrow |a+b|+|a-b|\ge |a|+|b| \)
Sumand si inegalitatile analoage obtinem:
\( |a+b|+|b+c|+|c+a|+|a-b|+|b-c|+|c-a|\ge 2(|a|+|b|+|c|) \ (1) \)
Din inegalitatea lui Hlawka avem:
\( |a+b+c|+|a|+|b|+|c|\ge |a+b|+|b+c|+|c+a|\ (2) \)
Adunand relatiile \( (1) \) si \( (2) \) obtinem concluzia.
\( |a+b|+|a-b|\ge |a+b+a-b|=2|a| \)
\( |a+b|+|a-b|\ge |a+b-(a-b)|=2|b| \)
\( \Longrightarrow |a+b|+|a-b|\ge |a|+|b| \)
Sumand si inegalitatile analoage obtinem:
\( |a+b|+|b+c|+|c+a|+|a-b|+|b-c|+|c-a|\ge 2(|a|+|b|+|c|) \ (1) \)
Din inegalitatea lui Hlawka avem:
\( |a+b+c|+|a|+|b|+|c|\ge |a+b|+|b+c|+|c+a|\ (2) \)
Adunand relatiile \( (1) \) si \( (2) \) obtinem concluzia.