Aratati ca \( 1779552-5328, \: 177795552-53328, \: 17777955552-533328, \dots \) sunt patrate perfecte.
Claudiu Mindrila, Revista Minus 1/2009
Sir cu o infinitate de patrate perfecte(own)
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Sir cu o infinitate de patrate perfecte(own)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Termenul general al sirului este \( a_n=1\underbrace{77...7}_{n ori}4\underbrace{22...2}_{n ori}4=(4\cdot3\cdot\underbrace{11...1}_{n ori})^2 \)
Alte probleme de acest fel:
1) Sa se arate ca numarul \( A=\underbrace{44...4}_{2n ori}-\underbrace{88...8}_{nori} \) este patrat perfect. Care este acest patrat?
2) Sa se arate ca numarul \( B=\underbrace{11...1}_{n-1 ori}\underbrace{22...2}_{nori}5 \) este patrat perfect. Care este acest patrat?
3) Numarul \( C=\frac{1}{3}\underbrace{88...8}_{3nori}-\underbrace{88...8}_{nori}\cdot 10^n \) este cub perfect. Care este acest cub?
Alte probleme de acest fel:
1) Sa se arate ca numarul \( A=\underbrace{44...4}_{2n ori}-\underbrace{88...8}_{nori} \) este patrat perfect. Care este acest patrat?
2) Sa se arate ca numarul \( B=\underbrace{11...1}_{n-1 ori}\underbrace{22...2}_{nori}5 \) este patrat perfect. Care este acest patrat?
3) Numarul \( C=\frac{1}{3}\underbrace{88...8}_{3nori}-\underbrace{88...8}_{nori}\cdot 10^n \) este cub perfect. Care este acest cub?
Last edited by Marius Mainea on Fri Mar 27, 2009 11:16 pm, edited 2 times in total.
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Solutia mea: \( 1\underbrace{77\dots7}_{n-1\ ori}9\underbrace{55\dots5}_{n-1\ ori}2-5\underbrace{33\dots3}_{n-2\ ori}28=16\cdot\frac{10^{n}-1}{9}\cdot10^{n}+32\cdot\frac{10^{n}-1}{9}-\frac{16}{3}\left(10^{n}-1\right)=\frac{16}{9}\left(10^{n}-1\right)\left(10^{n}+2-3\right)=\left[\frac{4}{3}\left(10^{n}-1\right)\right]^{2} \)Marius Mainea wrote:Termenul general al sirului este \( a_n=1\underbrace{77...7}_{n ori}4\underbrace{22...2}_{n ori}4=(4\cdot3\cdot\underbrace{11...1}_{n ori})^2 \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste