Sir cu o infinitate de patrate perfecte(own)

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Sir cu o infinitate de patrate perfecte(own)

Post by Claudiu Mindrila »

Aratati ca \( 1779552-5328, \: 177795552-53328, \: 17777955552-533328, \dots \) sunt patrate perfecte.

Claudiu Mindrila, Revista Minus 1/2009
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Termenul general al sirului este \( a_n=1\underbrace{77...7}_{n ori}4\underbrace{22...2}_{n ori}4=(4\cdot3\cdot\underbrace{11...1}_{n ori})^2 \)

Alte probleme de acest fel:

1) Sa se arate ca numarul \( A=\underbrace{44...4}_{2n ori}-\underbrace{88...8}_{nori} \) este patrat perfect. Care este acest patrat?

2) Sa se arate ca numarul \( B=\underbrace{11...1}_{n-1 ori}\underbrace{22...2}_{nori}5 \) este patrat perfect. Care este acest patrat?

3) Numarul \( C=\frac{1}{3}\underbrace{88...8}_{3nori}-\underbrace{88...8}_{nori}\cdot 10^n \) este cub perfect. Care este acest cub?
Last edited by Marius Mainea on Fri Mar 27, 2009 11:16 pm, edited 2 times in total.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Forma generala este de fapt \( a_n=1\underbrace{77...7}_{n ori}4\underbrace{22...2}_{n ori}4 \) . In plus patratul perfect pe care l-ati scris are ultima cifra 6, deci nu poate fi egal cu \( a_n \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Da , scuze.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Marius Mainea wrote:Termenul general al sirului este \( a_n=1\underbrace{77...7}_{n ori}4\underbrace{22...2}_{n ori}4=(4\cdot3\cdot\underbrace{11...1}_{n ori})^2 \)
Solutia mea: \( 1\underbrace{77\dots7}_{n-1\ ori}9\underbrace{55\dots5}_{n-1\ ori}2-5\underbrace{33\dots3}_{n-2\ ori}28=16\cdot\frac{10^{n}-1}{9}\cdot10^{n}+32\cdot\frac{10^{n}-1}{9}-\frac{16}{3}\left(10^{n}-1\right)=\frac{16}{9}\left(10^{n}-1\right)\left(10^{n}+2-3\right)=\left[\frac{4}{3}\left(10^{n}-1\right)\right]^{2} \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VIII-a”