Daca \( a,b,c\in \mathbb{R} \) si \( a^2+b^2+c^2=3 \) , aratati ca \( |a|+|b|+|c|-abc\le 4 \).
Virgil Nicula, OJ 2004
OJ 2004
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
\( |a|+|b|+|c|-abc \leq |a|+|b|+|c|+|abc| \) (egalitate cand sau 1 sau toate cele 3 numere sunt negative)
Pentru a demonstra ca \( |a|+|b|+|c|+|abc| \leq 4 \), problema devine echivalenta cu a, b, c reale pozitive, aratati ca \( a+b+c+abc \leq 4 \).
\( \frac{a^2+b^2+c^2}{3}\geq \sqrt[3]{(abc)^2} \)
deci \( abc \leq 1\ (1) \)
\( a^2+b^2+c^2-(a+b+c)\geq 0 \)
deci \( (a+b+c) \leq 3\ (2) \)
Adunand relatiile (1) si (2) ajungem la concluzia dorita.
Pentru a demonstra ca \( |a|+|b|+|c|+|abc| \leq 4 \), problema devine echivalenta cu a, b, c reale pozitive, aratati ca \( a+b+c+abc \leq 4 \).
\( \frac{a^2+b^2+c^2}{3}\geq \sqrt[3]{(abc)^2} \)
deci \( abc \leq 1\ (1) \)
\( a^2+b^2+c^2-(a+b+c)\geq 0 \)
deci \( (a+b+c) \leq 3\ (2) \)
Adunand relatiile (1) si (2) ajungem la concluzia dorita.
Last edited by Laurian Filip on Sun Feb 15, 2009 9:52 pm, edited 2 times in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)