OJ 2004

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

OJ 2004

Post by alex2008 »

Daca \( a,b,c\in \mathbb{R} \) si \( a^2+b^2+c^2=3 \) , aratati ca \( |a|+|b|+|c|-abc\le 4 \).

Virgil Nicula, OJ 2004
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

\( |a|+|b|+|c|-abc \leq |a|+|b|+|c|+|abc| \) (egalitate cand sau 1 sau toate cele 3 numere sunt negative)

Pentru a demonstra ca \( |a|+|b|+|c|+|abc| \leq 4 \), problema devine echivalenta cu a, b, c reale pozitive, aratati ca \( a+b+c+abc \leq 4 \).

\( \frac{a^2+b^2+c^2}{3}\geq \sqrt[3]{(abc)^2} \)
deci \( abc \leq 1\ (1) \)

\( a^2+b^2+c^2-(a+b+c)\geq 0 \)
deci \( (a+b+c) \leq 3\ (2) \)

Adunand relatiile (1) si (2) ajungem la concluzia dorita.
Last edited by Laurian Filip on Sun Feb 15, 2009 9:52 pm, edited 2 times in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Din AM-GM \( 3=a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2} \) de unde \( -abc\le|abc|\le 1 \)

In concluzie folosind Ineg. Cauchy-Schwarz obtinem

\( LHS\le \sqrt{3(a^2+b^2+c^2)}+1=4 \)
Post Reply

Return to “Clasa a IX-a”