Calculeze
\( \displaystyle \left|\frac {\int_0^{\frac {\pi}{2}} (x\cos x + 1)e^{\sin x}\ dx}{\int_0^{\frac {\pi}{2}} (x\sin x - 1)e^{\cos x}\ dx}\right|. \)
Calcul de integrala 7
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Kunihiko Chikaya
- Arhimede
- Posts: 7
- Joined: Sun Feb 03, 2008 7:06 pm
- Location: Tokio
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
\( I_1={\int_0^{\frac%20{\pi}{2}}%20(x\cos%20x%20+%201)e^{\sin%20x}\%20dx} \\
I_2={\int_0^{\frac%20{\pi}{2}}%20(x\sin%20x%20-%201)e^{\cos%20x}\%20dx} \)
\( I_1=\int_0^{\frac{\pi}{2}}((\frac{\pi}{2}-x)\sin x +1)e^{\cos x} dx \Rightarrow I_1+I_2= \int_0^{\frac{\pi}{2}} \frac{\pi}{2} e^{\cos x} \sin x dx=\frac{\pi}{2}(e-1) \).
Ar mai trebui inca o ecuatie sa facem un sistem si gata... Dar acuma nu imi iese.
I_2={\int_0^{\frac%20{\pi}{2}}%20(x\sin%20x%20-%201)e^{\cos%20x}\%20dx} \)
\( I_1=\int_0^{\frac{\pi}{2}}((\frac{\pi}{2}-x)\sin x +1)e^{\cos x} dx \Rightarrow I_1+I_2= \int_0^{\frac{\pi}{2}} \frac{\pi}{2} e^{\cos x} \sin x dx=\frac{\pi}{2}(e-1) \).
Ar mai trebui inca o ecuatie sa facem un sistem si gata... Dar acuma nu imi iese.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)