Calcul de integrala 7

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Kunihiko Chikaya
Arhimede
Posts: 7
Joined: Sun Feb 03, 2008 7:06 pm
Location: Tokio

Calcul de integrala 7

Post by Kunihiko Chikaya »

Calculeze

\( \displaystyle \left|\frac {\int_0^{\frac {\pi}{2}} (x\cos x + 1)e^{\sin x}\ dx}{\int_0^{\frac {\pi}{2}} (x\sin x - 1)e^{\cos x}\ dx}\right|. \)
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

\( I_1={\int_0^{\frac%20{\pi}{2}}%20(x\cos%20x%20+%201)e^{\sin%20x}\%20dx} \\
I_2={\int_0^{\frac%20{\pi}{2}}%20(x\sin%20x%20-%201)e^{\cos%20x}\%20dx} \)


\( I_1=\int_0^{\frac{\pi}{2}}((\frac{\pi}{2}-x)\sin x +1)e^{\cos x} dx \Rightarrow I_1+I_2= \int_0^{\frac{\pi}{2}} \frac{\pi}{2} e^{\cos x} \sin x dx=\frac{\pi}{2}(e-1) \).

Ar mai trebui inca o ecuatie sa facem un sistem si gata... Dar acuma nu imi iese.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Integrand prin parti

\( I_1=xe^{\sin x}|_0^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}e^{\sin x}dx+\int_0^{\frac{\pi}{2}}e^{\sin x}dx=e\frac{\pi}{2} \)

Analog pentru \( I_2. \)
Post Reply

Return to “Analiza matematica”