TMMATE problema 4

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

TMMATE problema 4

Post by Beniamin Bogosel »

Se considera un triunghi \( ABC \) in care \( m(\angle ABC)=75^o \). Fie \( D \in (BC) \) astfel incat \( AD \perp BC \). Stiind ca \( AD=\frac{1}{4}BC \), aratati ca
a) triunghiul este dreptunghic
b) \( \frac{AB}{AC}+\frac{AC}{AB}=4 \).

TMMATE 2009
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Fie \( E\in [AD] \) astfel incat \( \angle(EBD)=60^{\circ} \)

Notand \( BD=x \) rezulta \( AD=(2+\sqrt{3})x \) si \( DC=(7+4\sqrt{3})x \)

Asadar \( \triangle ABD\sim\triangle CAD \) de unde \( \angle(BAC)=90^{\circ} \)

Deasemenea tot din asemanare \( \frac{AB}{AC}=\frac{BD}{AD}=\frac{1}{2+\sqrt{3}} \) si de aici rezlta si punctul b).
Post Reply

Return to “Clasa a VIII-a”