Se considera un triunghi \( ABC \) in care \( m(\angle ABC)=75^o \). Fie \( D \in (BC) \) astfel incat \( AD \perp BC \). Stiind ca \( AD=\frac{1}{4}BC \), aratati ca
a) triunghiul este dreptunghic
b) \( \frac{AB}{AC}+\frac{AC}{AB}=4 \).
TMMATE 2009
TMMATE problema 4
Moderators: Bogdan Posa, Laurian Filip
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
TMMATE problema 4
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Fie \( E\in [AD] \) astfel incat \( \angle(EBD)=60^{\circ} \)
Notand \( BD=x \) rezulta \( AD=(2+\sqrt{3})x \) si \( DC=(7+4\sqrt{3})x \)
Asadar \( \triangle ABD\sim\triangle CAD \) de unde \( \angle(BAC)=90^{\circ} \)
Deasemenea tot din asemanare \( \frac{AB}{AC}=\frac{BD}{AD}=\frac{1}{2+\sqrt{3}} \) si de aici rezlta si punctul b).
Notand \( BD=x \) rezulta \( AD=(2+\sqrt{3})x \) si \( DC=(7+4\sqrt{3})x \)
Asadar \( \triangle ABD\sim\triangle CAD \) de unde \( \angle(BAC)=90^{\circ} \)
Deasemenea tot din asemanare \( \frac{AB}{AC}=\frac{BD}{AD}=\frac{1}{2+\sqrt{3}} \) si de aici rezlta si punctul b).