Sa se arate ca pentru orice \( x,y,z \in \mathbb{R^{\ast} \) are loc inegalitatea:
\( \frac{x^2}{x^{12}+y^6+z^6}+\frac{y^2}{x^6+y^{12}+z^6}+\frac{z^2}{x^6+y^6+z^{12}}\le \frac{1}{x^2y^2z^2}. \)
Concursul ,,Marian Tarina'', 2008
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Notam \( x=a^2,y=b^2,z=c^2 \). Inegalitatea devine \( \sum \frac{a}{a^6+b^3+c^3} \leq\frac{1}{abc} \). Dar din inegalitatea mediilor
\( \sum \frac{a}{a^6+b^3+c^3} \leq \sum\frac{a}{3a^2bc}=\sum \frac{abc}{3a^2b^2c^2}=\frac{3abc}{3a^2b^2c^2}=\frac{1}{abc} \qed \)
\( \sum \frac{a}{a^6+b^3+c^3} \leq \sum\frac{a}{3a^2bc}=\sum \frac{abc}{3a^2b^2c^2}=\frac{3abc}{3a^2b^2c^2}=\frac{1}{abc} \qed \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani