Concursul ,,Marian Tarina'', 2008

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Concursul ,,Marian Tarina'', 2008

Post by Marius Mainea »

Sa se arate ca pentru orice \( x,y,z \in \mathbb{R^{\ast} \) are loc inegalitatea:

\( \frac{x^2}{x^{12}+y^6+z^6}+\frac{y^2}{x^6+y^{12}+z^6}+\frac{z^2}{x^6+y^6+z^{12}}\le \frac{1}{x^2y^2z^2}. \)
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Notam \( x=a^2,y=b^2,z=c^2 \). Inegalitatea devine \( \sum \frac{a}{a^6+b^3+c^3} \leq\frac{1}{abc} \). Dar din inegalitatea mediilor
\( \sum \frac{a}{a^6+b^3+c^3} \leq \sum\frac{a}{3a^2bc}=\sum \frac{abc}{3a^2b^2c^2}=\frac{3abc}{3a^2b^2c^2}=\frac{1}{abc} \qed \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Post by maxim bogdan »

Claudiu Mindrila wrote:Notam \( x=a^2,y=b^2,z=c^2 \).
Era \( x^2=a; y^2=b; z^2=c \) :wink:
Feuerbach
Post Reply

Return to “Clasa a IX-a”