Proprietati ale unei multimi finite

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Proprietati ale unei multimi finite

Post by Marius Mainea »

Fie \( M\subset(0,\infty) \) o multime finita cu proprietatea ca orice element \( a\in M \) se poate reprezenta sub forma \( a=1+\frac{b}{c} \) cu \( b\in M \) si \( c\in M \).
Aratati ca exista \( x\in M \) si \( y\in M \) astfel incat \( x+y\ge 4 \)

Concursul ,,Nicolae Paun'' , 2004
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Daca \( x \in M \Longrightarrow x=1+\frac{m}{n} \) cu \( x,y \in M \)
Putem alege \( y= 1+\frac{n}{m} \in M \) si vom obtine ca:

\( x+y=2+\frac{m}{n}+\frac{n}{m}\geq 2+2=4 \)
Last edited by Claudiu Mindrila on Wed Nov 26, 2008 7:36 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Claudiu Mindrila wrote: Putem alege \( y= 1+\frac{n}{m} \in M \)
De unde vine aceasta relatie?
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Fie m, minimul lui M.

Atunci \( m=1+\frac{b}{c}\ge 1+\frac{m}{c} \) si de aici

\( m\ge \frac{c}{c-1} \)

Asadar \( m+c\ge\frac{c}{c-1}+c\ge 4 \) si problema este rezolvata.
Post Reply

Return to “Clasa a VIII-a”