Fie \( M\subset(0,\infty) \) o multime finita cu proprietatea ca orice element \( a\in M \) se poate reprezenta sub forma \( a=1+\frac{b}{c} \) cu \( b\in M \) si \( c\in M \).
Aratati ca exista \( x\in M \) si \( y\in M \) astfel incat \( x+y\ge 4 \)
Concursul ,,Nicolae Paun'' , 2004
Proprietati ale unei multimi finite
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Daca \( x \in M \Longrightarrow x=1+\frac{m}{n} \) cu \( x,y \in M \)
Putem alege \( y= 1+\frac{n}{m} \in M \) si vom obtine ca:
\( x+y=2+\frac{m}{n}+\frac{n}{m}\geq 2+2=4 \)
Putem alege \( y= 1+\frac{n}{m} \in M \) si vom obtine ca:
\( x+y=2+\frac{m}{n}+\frac{n}{m}\geq 2+2=4 \)
Last edited by Claudiu Mindrila on Wed Nov 26, 2008 7:36 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)