Ecuatii cu solutii nereale

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Ecuatii cu solutii nereale

Post by alex2008 »

Se dau ecuatiile \( x^2-2ax+2bc=0 \) si \( x^2-2bx+2ac=0 \) si \( x^2-2cx+2ab=0 \) . Stiind ca a , b , c pozitive sa se arate ca cel putin una din ecuatii are solutii nereale .
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Am impresia ca unul dintre moderatori a scris din greseala , rezolvarea , in interiorul mesajului , fiindca rezolvarea de mai sus nu-mi apartine . :)
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

imi cer scuze :D



Presupunem ca toate au solutii reale.

de unde
\( 4a^2\geq8bc \)
\( 4b^2\geq8ac \)
\( 4c^2\geq8ab \)

sunt pozitive deci le putem inmulti si avem

\( 4^3 (abc)^2 \geq 8^3(abc)^2 \)
\( 4\geq8 \)

contradictie.

Deci macar e ecuatie are solutii nereale.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

E foarte buna rezolvarea , dar la sfarsit daca va uitati mai atent cred ca este \( 1\ge8 \) :D
User avatar
abc
Euclid
Posts: 11
Joined: Thu Oct 16, 2008 11:26 am

Post by abc »

Nu, ca n-a impartit prin \( 4^3 \). A folosit ceva de genu \( a^3\ge b^3 \) daca si numai daca \( a\ge b \).
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Chestia asta mi-a picat la un concurs acum 2 zile :lol:
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

abc wrote:Nu, ca n-a impartit prin \( 4^3 \). A folosit ceva de genu \( a^3\ge b^3 \) daca si numai daca \( a\ge b \).
Ai dreptate... doar acum am vazut postul lui alex2008 si incercam sa imi dau seama cum de am gresit la calcul dar de fapt asta am facut. :D


Dragos Calinescu wrote:Chestia asta mi-a picat la un concurs acum 2 zile
La care concurs?
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Un concurs mai slabut...Dan Barbilian. E judetean In Arges, asa de incalzire :D
Post Reply

Return to “Clasa a IX-a”