Tot o inegalitate

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Tot o inegalitate

Post by Claudiu Mindrila »

Demonstrati ca pentru orice numere reale \( a,b,c \in(0, \infty) \) avem \( \frac{a^3}{b(b+c)}+\frac{b^3}{c(c+a)}+\frac{c^3}{a(a+b)} \geq \frac{a+b+c}{2} \).

Costel Anghel, Revista Minus 1/2008
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

Se aplica Cauchy si gata. :P
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Sa vedem si noi cum se aplica CBS, domnu' Marius.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Aceasta este si intrebarea mea :?: pentru Marius Dragoi.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

\( \sum \frac{a^3}{b(b+c)}=\sum \frac{a^4}{ab(b+c)} \geq \frac{\left( \sum a^2 \right)^2}{\sum ab^2+\sum abc} \geq \frac{a+b+c}{2} \)

ultima fiind echivalenta cu

\( 2\sum a^4+3 \sum a^2b^2 \geq \sum abc^2+\sum a^3c+3 \sum a^2bc \)

care este adevarata deoarece

\( 3 \sum a^2b^2 \geq 3 \sum a^2bc \) si \( 2\sum a^4 \geq \sum abc^2+\sum a^3c \).
A mathematician is a machine for turning coffee into theorems.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Frumoasa solutie, Radu Titiu :)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Solutia 2

Tripletele \( (\frac{a^3}{b+c},\frac{b^3}{c+a},\frac{c^3}{a+b}) \) si \( (a,b,c) \) sunt invers orientate si atunci

\( \sum {\frac{a^3}{b(b+c)}}\geq\sum{\frac{a^3}{a(b+c)}}=\sum {\frac{a^2}{b+c}\geq\frac{a+b+c}{2} \) conform CBS.
Post Reply

Return to “Clasa a IX-a”