Demonstrati ca pentru orice numere reale \( a,b,c \in(0, \infty) \) avem \( \frac{a^3}{b(b+c)}+\frac{b^3}{c(c+a)}+\frac{c^3}{a(a+b)} \geq \frac{a+b+c}{2} \).
Costel Anghel, Revista Minus 1/2008
Tot o inegalitate
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Tot o inegalitate
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
\( \sum \frac{a^3}{b(b+c)}=\sum \frac{a^4}{ab(b+c)} \geq \frac{\left( \sum a^2 \right)^2}{\sum ab^2+\sum abc} \geq \frac{a+b+c}{2} \)
ultima fiind echivalenta cu
\( 2\sum a^4+3 \sum a^2b^2 \geq \sum abc^2+\sum a^3c+3 \sum a^2bc \)
care este adevarata deoarece
\( 3 \sum a^2b^2 \geq 3 \sum a^2bc \) si \( 2\sum a^4 \geq \sum abc^2+\sum a^3c \).
ultima fiind echivalenta cu
\( 2\sum a^4+3 \sum a^2b^2 \geq \sum abc^2+\sum a^3c+3 \sum a^2bc \)
care este adevarata deoarece
\( 3 \sum a^2b^2 \geq 3 \sum a^2bc \) si \( 2\sum a^4 \geq \sum abc^2+\sum a^3c \).
A mathematician is a machine for turning coffee into theorems.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)