Shortlist ONM 2003

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Shortlist ONM 2003

Post by Claudiu Mindrila »

Demonstrati inegalitatea \( \frac{(a+b)^3}{c}+\frac{(b+c)^3}{a}+\frac{(c+a)^3}{b} \geq 8(a^2+b^2+c^2). \)

Nicolae Papacu, lista scurta, 2003
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

O solutie ar fi urmatoarea:

\( \sum \frac{(a+b)^3}{c}=\sum \frac{a^3}{c}+\sum \frac{b^3}{c}+3\sum \frac{a^2b}{c}+3\sum \frac{ab^2}{c} \).

Acum din inegalitatea lui Cebasev a rearanjamentelor rezulta
\( \sum \frac{a^3}{c}\geq\sum a^2 \) si \( \sum \frac{b^3}{c}\geq\sum a^2 \).

Inegalitatea \( \sum \frac{a^2b}{c}+\sum \frac{ab^2}{c}\geq 2\sum a^2 \) e echivalenta cu \( \sum_{sym} a^3b^2\geq \sum_{sym} a^3bc \), care este adevarata conform inegalitatii lui Muirhead pentru tripletele \( (3,2,0) \geq (3,1,1) \).

Insumand acestea obtinem inegalitatea dorita. :)

Pentru inegalitatea lui Muirhead incercati cu google (nu am putut sa pun link...).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

marius mainea
Tripletele (\( \frac{(a+b)^2}{c^2}, \)\( \frac{(b+c)^2}{a^2}, \)\( \frac{(c+a)^2}{b^2}) \) si \( (a+b,b+c,c+a) \) sunt la fel orientate, deci putem aplica inegalitatea Cebasev.

Apoi cu CBS si medii rezulta inegalitatea dorita.
User avatar
salazar
Pitagora
Posts: 91
Joined: Mon Apr 06, 2009 7:36 am
Location: Alba Iulia

Post by salazar »

O alta abordare:
\( \sum \frac{(a+b)^3}{c}=\sum \frac{(a+b)^4}{ac+bc}\ge(C.B.S)\frac{[(a+b)^2+(b+c)^2+(c+a)^2]^2}{2(ab+bc+ca)}\ge 8(a^2+b^2+c^2)\Longleftrightarrow (\sum a^2+\sum ab)^2\ge 4(\sum a^2)(\sum ab) \)
Notand \( \sum a^2=x \) si \( \sum ab=y \) ramane de demonstrat ca \( (x+y)^2\ge 4xy\Longleftrightarrow (x-y)^2\ge0 q.e.d \)
Edit: eu am gasit aceasta inegalitate propusa pentru clasa a VIII-a in 2003, cu a,b,c strict pozitive.
Post Reply

Return to “Clasa a IX-a”