Fie \( f_1,f_2: [0, \infty) \to R \) derivabile de doua ori si convexe cu \( f_1(0)=f_2(0)=0 \). Aratati ca:
a) daca \( g: (0, \infty) \to R \), \( g(x) = \frac {f_1(x)}{x} \), atunci \( g \) este crescatoare;
b) daca \( f_1+f_2 \) este crescatoare si \( x,y,\lambda_1,\lambda_2 \geq 0 \) cu \( \lambda_1+\lambda_2=1 \) si \( \lambda_1 x \geq \lambda_2 y \) atunci au loc inegalitatile
\( f_1(\lambda_1 x -\lambda_2 y) \leq \lambda_1 f_1(x) + \lambda_2 f_2(y) \) si \( f_2(\lambda_1 x - \lambda_2 y) \leq \lambda_1 f_2(x) + \lambda_2 f_1(y) \).
Concursul 'Gh. Titeica', problema 2
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
Concursul 'Gh. Titeica', problema 2
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
a) Daca \( x>y>0 \) atunci exista \( \alpha,\beta \in (0,1), \alpha+\beta=1 \) astfel incat \( y=\alpha \cdot 0+\beta x=\beta x \). Deoarece \( f \) e convexa, avem \( f(\beta x)\leq \beta f(x)\Rightarrow f(y)\leq \beta f(x) \). Daca impartim cu \( y=\beta x \) obtinem ca \( g(y)\leq g(x) \), adica \( g \) este crescatoare.