Concursul 'Gh. Titeica', problema 2

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Concursul 'Gh. Titeica', problema 2

Post by Marius Dragoi »

Fie \( f_1,f_2: [0, \infty) \to R \) derivabile de doua ori si convexe cu \( f_1(0)=f_2(0)=0 \). Aratati ca:
a) daca \( g: (0, \infty) \to R \), \( g(x) = \frac {f_1(x)}{x} \), atunci \( g \) este crescatoare;
b) daca \( f_1+f_2 \) este crescatoare si \( x,y,\lambda_1,\lambda_2 \geq 0 \) cu \( \lambda_1+\lambda_2=1 \) si \( \lambda_1 x \geq \lambda_2 y \) atunci au loc inegalitatile
\( f_1(\lambda_1 x -\lambda_2 y) \leq \lambda_1 f_1(x) + \lambda_2 f_2(y) \) si \( f_2(\lambda_1 x - \lambda_2 y) \leq \lambda_1 f_2(x) + \lambda_2 f_1(y) \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

a) Daca \( x>y>0 \) atunci exista \( \alpha,\beta \in (0,1), \alpha+\beta=1 \) astfel incat \( y=\alpha \cdot 0+\beta x=\beta x \). Deoarece \( f \) e convexa, avem \( f(\beta x)\leq \beta f(x)\Rightarrow f(y)\leq \beta f(x) \). Daca impartim cu \( y=\beta x \) obtinem ca \( g(y)\leq g(x) \), adica \( g \) este crescatoare.
Post Reply

Return to “Analiza matematica”