a) Aratati ca \( \frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2n}}>n,\ \forall n \in \mathbb{N^*} \).
b) Demonstrati ca pentru orice \( n \in \mathbb{N}^* \) are loc inegalitatea
\( \min\left\{k \in \mathbb{N},\ k\geq 2 \mid \ \frac{1}{2}+\frac{1}{3}+...+\frac{1}{k}>n\right\}>2^n. \)
Problema 2 ONM 2008
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
a) \( 2^k-2^{k-1}=2^{k-1}(2-1)=2^{k-1} \) de unde rezulta ca intre 2^{k-1} si \( 2^k-1 \) sunt \( 2^{k-1} \) numere (inclusiv cele 2).
\( \frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{2n}}>\frac{1}{2}+(\frac{1}{4}+\frac{1}{4})+\cdots+(\frac{1}{2^{2n}}+\frac{1}{2^{2n}}+\cdots+\frac{1}{2^{2n}})=2n\cdot\frac{1}{2}=n \)
b) \( \frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^n}<\frac{1}{2}+(\frac{1}{2}+\frac{1}{2})+\cdots+(\frac{1}{2^{n-1}}+\cdots+\frac{1}{2^{n-1}})=\frac{1}{2}+n-1<n \)
deci \( \min\left\{k \in \mathbb{N},\ k\geq 2 \mid \ \frac{1}{2}+\frac{1}{3}+...+\frac{1}{k}>n\right\}> 2^n. \)
\( \frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{2n}}>\frac{1}{2}+(\frac{1}{4}+\frac{1}{4})+\cdots+(\frac{1}{2^{2n}}+\frac{1}{2^{2n}}+\cdots+\frac{1}{2^{2n}})=2n\cdot\frac{1}{2}=n \)
b) \( \frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^n}<\frac{1}{2}+(\frac{1}{2}+\frac{1}{2})+\cdots+(\frac{1}{2^{n-1}}+\cdots+\frac{1}{2^{n-1}})=\frac{1}{2}+n-1<n \)
deci \( \min\left\{k \in \mathbb{N},\ k\geq 2 \mid \ \frac{1}{2}+\frac{1}{3}+...+\frac{1}{k}>n\right\}> 2^n. \)
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Vedeti demonstratia estimarii
\( \ln (n+1) < H_n \le \ln(n) + 1 \), \( H_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n} \)
aflata aici (partea din stânga rezulta în mod analog, important este de fapt sa stii la ce doresti sa ajungi).
\( \ln (n+1) < H_n \le \ln(n) + 1 \), \( H_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n} \)
aflata aici (partea din stânga rezulta în mod analog, important este de fapt sa stii la ce doresti sa ajungi).
Life is complex: it has real and imaginary components.