Problema 2 ONM 2008

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Problema 2 ONM 2008

Post by Beniamin Bogosel »

a) Aratati ca \( \frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2n}}>n,\ \forall n \in \mathbb{N^*} \).

b) Demonstrati ca pentru orice \( n \in \mathbb{N}^* \) are loc inegalitatea
\( \min\left\{k \in \mathbb{N},\ k\geq 2 \mid \ \frac{1}{2}+\frac{1}{3}+...+\frac{1}{k}>n\right\}>2^n. \)
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

a) \( 2^k-2^{k-1}=2^{k-1}(2-1)=2^{k-1} \) de unde rezulta ca intre 2^{k-1} si \( 2^k-1 \) sunt \( 2^{k-1} \) numere (inclusiv cele 2).

\( \frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{2n}}>\frac{1}{2}+(\frac{1}{4}+\frac{1}{4})+\cdots+(\frac{1}{2^{2n}}+\frac{1}{2^{2n}}+\cdots+\frac{1}{2^{2n}})=2n\cdot\frac{1}{2}=n \)

b) \( \frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^n}<\frac{1}{2}+(\frac{1}{2}+\frac{1}{2})+\cdots+(\frac{1}{2^{n-1}}+\cdots+\frac{1}{2^{n-1}})=\frac{1}{2}+n-1<n \)

deci \( \min\left\{k \in \mathbb{N},\ k\geq 2 \mid \ \frac{1}{2}+\frac{1}{3}+...+\frac{1}{k}>n\right\}> 2^n. \)
User avatar
mumble
Euclid
Posts: 48
Joined: Wed Jan 30, 2008 10:25 pm

Post by mumble »

Observatie. La b), sa nu uitam ca trebuie sa specificam ca exista un astfel de minim :D . E clar de ce exista (!) - se stie ca \( \sum_{k \ge 2} \frac{1}{k}= \infty \) sau eventual folosind punctul a). Acest mic amanunt ne-a costat pe multi cateva puncte :cry: .
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Vedeti demonstratia estimarii

\( \ln (n+1) < H_n \le \ln(n) + 1 \), \( H_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n} \)

aflata aici (partea din stânga rezulta în mod analog, important este de fapt sa stii la ce doresti sa ajungi).
Life is complex: it has real and imaginary components.
Post Reply

Return to “Clasa a IX-a”