Sa se determine \( f : \mathbb{N}^{\ast} \rightarrow \mathbb{R} \) pentru care:
a) \( f(1) = 2008 \).
b) \( \sum_{k=1}^n f(k) = \frac{1}{n} f(n) \), \( \forall n \ge 1 \).
Ecuatie functionala imediata
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Ecuatie functionala imediata
Life is complex: it has real and imaginary components.
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Avem: \( \sum_{k=1}^{n} f(k)=\frac{1}{n}f(n). \)
\( \sum_{k=1}^{n+1} f(k)=\frac{1}{n+1}f(n+1). \)
Scazand aceste doua relatii vom obtine urmatoarea recurenta:
\( f(n+1)=-\frac{n+1}{n^2} f(n) \), de unde rezulta imediat ca :
\( f(n+1)=\frac{(-1)^n(n+1)}{n!} f(1). \)
Din cate stiu aceata problema a fost data la Olimpiada locala a municipiului Bucuresti 2008.
\( \sum_{k=1}^{n+1} f(k)=\frac{1}{n+1}f(n+1). \)
Scazand aceste doua relatii vom obtine urmatoarea recurenta:
\( f(n+1)=-\frac{n+1}{n^2} f(n) \), de unde rezulta imediat ca :
\( f(n+1)=\frac{(-1)^n(n+1)}{n!} f(1). \)
Din cate stiu aceata problema a fost data la Olimpiada locala a municipiului Bucuresti 2008.
Feuerbach
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti