Ecuatie functionala imediata

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Ecuatie functionala imediata

Post by Filip Chindea »

Sa se determine \( f : \mathbb{N}^{\ast} \rightarrow \mathbb{R} \) pentru care:
a) \( f(1) = 2008 \).
b) \( \sum_{k=1}^n f(k) = \frac{1}{n} f(n) \), \( \forall n \ge 1 \).
Life is complex: it has real and imaginary components.
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Post by maxim bogdan »

Avem: \( \sum_{k=1}^{n} f(k)=\frac{1}{n}f(n). \)

\( \sum_{k=1}^{n+1} f(k)=\frac{1}{n+1}f(n+1). \)


Scazand aceste doua relatii vom obtine urmatoarea recurenta:

\( f(n+1)=-\frac{n+1}{n^2} f(n) \), de unde rezulta imediat ca :

\( f(n+1)=\frac{(-1)^n(n+1)}{n!} f(1). \)

Din cate stiu aceata problema a fost data la Olimpiada locala a municipiului Bucuresti 2008.
Feuerbach
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Da a fost la Bucuresti anu trecut.

Ceva asemanator s-a dat si la Satu Mare anu trecut:

\(

k\cdot\sum_{k=1}^n f(k)=\frac{n^2(n+1)}{2}f(n)
\)

stiind \( f(1)=2008.


\)
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Da tot ideea aia de rezolvare e. Bogdan vezi ca acolo cred ca e \( n!^2 \)
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Post by maxim bogdan »

E bun termenul general cu \( n! \). Calculeaza \( f(3)... \) sa te convingi.
Feuerbach
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Da :) greseala mea. Nu m-am uitat bine la relatia de recurenta.
Post Reply

Return to “Clasa a IX-a”