O solutie la nivel gimnazial...
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
O solutie la nivel gimnazial...
In G.M.-B \( 5-6/2008 \) dl. Gh. Stoica propune urmatoarea problema:
Fie \( k\in \mathbb{N} \) si \( x_1,x_2,...,x_k \) numere reale pozitive. Aratati ca:
\( a) \) daca \( x_1^n+x_2^n+...+x_k^n\leq k \), atunci \( x_1+x_2+...+x_k\leq k, \forall n \in \mathbb{N}^* \);
\( b) \) daca \( x_1+x_2+...+x_k\geq k \), atunci \( x_1^n+x_2^n+...+x_k^n\geq k, \forall n\in \mathbb{N}^* \)
As dori sa stiu daca exista o solutie la nivel de gimnaziu pentru aceasta problema, dat fiind faptul ca problema a aparut la rubrica
"PROBLEME PENTRU CONCURSURI SI OLIMPIADE"
Fie \( k\in \mathbb{N} \) si \( x_1,x_2,...,x_k \) numere reale pozitive. Aratati ca:
\( a) \) daca \( x_1^n+x_2^n+...+x_k^n\leq k \), atunci \( x_1+x_2+...+x_k\leq k, \forall n \in \mathbb{N}^* \);
\( b) \) daca \( x_1+x_2+...+x_k\geq k \), atunci \( x_1^n+x_2^n+...+x_k^n\geq k, \forall n\in \mathbb{N}^* \)
As dori sa stiu daca exista o solutie la nivel de gimnaziu pentru aceasta problema, dat fiind faptul ca problema a aparut la rubrica
"PROBLEME PENTRU CONCURSURI SI OLIMPIADE"
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
b) bernulli spune ca \( (1+a)^n \geq 1+an \)
pt \( a=x_k-1 \)
avem \( x_1^n+x_2^n+...+x_k^n \geq \sum (1+n(x_i-1))\geq k+nk-nk=k \)
a) presupunem prin absurd ca \( x_1+x_2+...+x_n \g k \)
avem ca \( x_1+x_2+...+x_n \leq \sum 1+an \leq x_1^n+x_2^n+...+x_k^n \leq k \)
contradictie. deci \( x_1+x_2+...+x_n < k \)
pt \( a=x_k-1 \)
avem \( x_1^n+x_2^n+...+x_k^n \geq \sum (1+n(x_i-1))\geq k+nk-nk=k \)
a) presupunem prin absurd ca \( x_1+x_2+...+x_n \g k \)
avem ca \( x_1+x_2+...+x_n \leq \sum 1+an \leq x_1^n+x_2^n+...+x_k^n \leq k \)
contradictie. deci \( x_1+x_2+...+x_n < k \)
Last edited by Laurian Filip on Sat Sep 20, 2008 10:15 pm, edited 1 time in total.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
si o demonstratie gimnaziala pentru asta in caz ca e nevoie.
\( (1+x_1)(1+x_2)........(1+x_n)\geq(1+x_1+x_2+...+x_n) \)
\( (1+x_1)(1+x_2)=1+x_1+x_2+x_1x_2>1+x_1+x_1 \) (pentru ca in cazu nostru \( x_1=x_2 \), deci au acelasi semn)
folosim metoda inductiei si presupunem p(k) adevarat.
\( p(k) \):\( (1+x_1)(1+x_2)\cdots (1+x_k)>(1+x_1+...+x_k) \)
\( (1+x_1)(1+x_2)\cdots(1+x_k)(1+x_{k+1})>(1+x_1+...+x_k)(1+x_{k+1})>(1+x_1+...+x_{k+1}) \) (din P(2))
p(k) implica p(k+1), p(2) adevarat deci p(n) este adevarat \( \forall n \in \mathbb{N} \)
ps: evident este adevarat pentru \( (1+x_n)>0 \) adica \( a>-1 \) in bernoulli
\( (1+x_1)(1+x_2)........(1+x_n)\geq(1+x_1+x_2+...+x_n) \)
\( (1+x_1)(1+x_2)=1+x_1+x_2+x_1x_2>1+x_1+x_1 \) (pentru ca in cazu nostru \( x_1=x_2 \), deci au acelasi semn)
folosim metoda inductiei si presupunem p(k) adevarat.
\( p(k) \):\( (1+x_1)(1+x_2)\cdots (1+x_k)>(1+x_1+...+x_k) \)
\( (1+x_1)(1+x_2)\cdots(1+x_k)(1+x_{k+1})>(1+x_1+...+x_k)(1+x_{k+1})>(1+x_1+...+x_{k+1}) \) (din P(2))
p(k) implica p(k+1), p(2) adevarat deci p(n) este adevarat \( \forall n \in \mathbb{N} \)
ps: evident este adevarat pentru \( (1+x_n)>0 \) adica \( a>-1 \) in bernoulli
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact: