O solutie la nivel gimnazial...

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

O solutie la nivel gimnazial...

Post by Claudiu Mindrila »

In G.M.-B \( 5-6/2008 \) dl. Gh. Stoica propune urmatoarea problema:
Fie \( k\in \mathbb{N} \) si \( x_1,x_2,...,x_k \) numere reale pozitive. Aratati ca:

\( a) \) daca \( x_1^n+x_2^n+...+x_k^n\leq k \), atunci \( x_1+x_2+...+x_k\leq k, \forall n \in \mathbb{N}^* \);
\( b) \) daca \( x_1+x_2+...+x_k\geq k \), atunci \( x_1^n+x_2^n+...+x_k^n\geq k, \forall n\in \mathbb{N}^* \)

As dori sa stiu daca exista o solutie la nivel de gimnaziu pentru aceasta problema, dat fiind faptul ca problema a aparut la rubrica
"PROBLEME PENTRU CONCURSURI SI OLIMPIADE"
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

b) bernulli spune ca \( (1+a)^n \geq 1+an \)

pt \( a=x_k-1 \)

avem \( x_1^n+x_2^n+...+x_k^n \geq \sum (1+n(x_i-1))\geq k+nk-nk=k \)


a) presupunem prin absurd ca \( x_1+x_2+...+x_n \g k \)

avem ca \( x_1+x_2+...+x_n \leq \sum 1+an \leq x_1^n+x_2^n+...+x_k^n \leq k \)

contradictie. deci \( x_1+x_2+...+x_n < k \)
Last edited by Laurian Filip on Sat Sep 20, 2008 10:15 pm, edited 1 time in total.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Filip, Bernouli la nivel gimnazial? :?
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

ti se pare ce aceasta formula depaseste nivelu gimnazial?

\( (1+a)^n \geq 1+an \)

eu la lot la juniori lam invatat... :D
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Sincer sa fiu da. Din cate stiu eu, Bernoulli se face prin liceu :? .
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Bernoulli e materie de clasa a7a si se demonstreaza cu
\( (1+x_1)(1+x_2)........(1+x_n)\geq(1+x_1+x_2+...+x_n) \)
n-ar fi rau sa fie bine :)
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

si o demonstratie gimnaziala pentru asta in caz ca e nevoie.

\( (1+x_1)(1+x_2)........(1+x_n)\geq(1+x_1+x_2+...+x_n) \)

\( (1+x_1)(1+x_2)=1+x_1+x_2+x_1x_2>1+x_1+x_1 \) (pentru ca in cazu nostru \( x_1=x_2 \), deci au acelasi semn)

folosim metoda inductiei si presupunem p(k) adevarat.
\( p(k) \):\( (1+x_1)(1+x_2)\cdots (1+x_k)>(1+x_1+...+x_k) \)

\( (1+x_1)(1+x_2)\cdots(1+x_k)(1+x_{k+1})>(1+x_1+...+x_k)(1+x_{k+1})>(1+x_1+...+x_{k+1}) \) (din P(2))
p(k) implica p(k+1), p(2) adevarat deci p(n) este adevarat \( \forall n \in \mathbb{N} \)

ps: evident este adevarat pentru \( (1+x_n)>0 \) adica \( a>-1 \) in bernoulli
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Bernoulli se poate demonstra cu inegalitatea mediilor pt n variabile.

\( \frac{(1+a)^n+n-1}{n} \geq \sqrt[n]{(1+a)^n} \) \( \Rightarrow \)

\( (1+a)^n \geq 1+na \)
A mathematician is a machine for turning coffee into theorems.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Filip, inductia e materie de clasa a 9-a :)) asa ca solutia lui radu e cea mai buna.
n-ar fi rau sa fie bine :)
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

sunt de acord ca solutia lui e mai buna, si ca iductia e de a 9a. Dar voiam sa demonstrez ce ai zis tu, si asa mi se parea cel mai usor.
Post Reply

Return to “Clasa a VIII-a”