Integrala si parte fractionara
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei
Integrala si parte fractionara
Sa se calculeze\( {\lim }\limits_{n \to \infty } \int\limits_n^{n + 1} {\left\{ {x^2 \sin \frac{1}{x}} \right\}} dx \)
La inceput a fost numarul. El este stapanul universului.
-
turcas
- Pitagora
- Posts: 83
- Joined: Fri Sep 28, 2007 1:48 pm
- Location: Simleu Silvaniei, jud Salaj
- Contact:
Pentru \( 0 < \varepsilon < 1 \) si \( n \) suficient de mare, avem:
\( \left\{ x^2 \sin \left( \frac{1}{x} \right) \right\}=x^2 \sin{\frac{1}{x}}-n \), pentru orice \( x \in [n + \varepsilon; n+1] \).
Deci
\( \lim\limits_{n \to \infty} \int_{n+\varepsilon}^{n+1} \left\{ x^2 \sin{\frac{1}{x}} \right\} dx = \lim\limits_{n \to \infty} \int_{n + \varepsilon}^{n+1} \left( x^2 \sin{\frac{1}{x}} \right) dx -n(1-\varepsilon) \).
Deci limita ceruta este \( \lim\limits_{n \to \infty} \int_{n+\varepsilon}^{n+1} x^2 \left( \frac{1}{x}- \frac{1}{3!x^3}+\frac{1}{5!x^5} - \dots \right) dx - n(1-\varepsilon)= \frac{1-\varepsilon^2}{2} \).
Daca il facem pe \( \varepsilon \to 0 \), obtinem limita \( \frac{1}{2} \).
\( \left\{ x^2 \sin \left( \frac{1}{x} \right) \right\}=x^2 \sin{\frac{1}{x}}-n \), pentru orice \( x \in [n + \varepsilon; n+1] \).
Deci
\( \lim\limits_{n \to \infty} \int_{n+\varepsilon}^{n+1} \left\{ x^2 \sin{\frac{1}{x}} \right\} dx = \lim\limits_{n \to \infty} \int_{n + \varepsilon}^{n+1} \left( x^2 \sin{\frac{1}{x}} \right) dx -n(1-\varepsilon) \).
Deci limita ceruta este \( \lim\limits_{n \to \infty} \int_{n+\varepsilon}^{n+1} x^2 \left( \frac{1}{x}- \frac{1}{3!x^3}+\frac{1}{5!x^5} - \dots \right) dx - n(1-\varepsilon)= \frac{1-\varepsilon^2}{2} \).
Daca il facem pe \( \varepsilon \to 0 \), obtinem limita \( \frac{1}{2} \).
Last edited by turcas on Fri Feb 12, 2010 6:57 pm, edited 1 time in total.
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei
Nedumerire
Ai putea sa explici de ce \( \left\{ x^2 \sin \left( \frac{1}{x} \right) \right\}=x^2 \sin{\frac{1}{x}}-n, \)pentru orice \( x \in [n+\varepsilon,n+1] \)
La inceput a fost numarul. El este stapanul universului.
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti