Inegalitate cu numere complexe
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Inegalitate cu numere complexe
Daca \( z_1,\ z_2,\ z_3\in \mathbb{C} \) sunt astfel incat \( z_1+z_2+z_3\neq 0,\ z_1^{2}+z_2^{2}+z_3^{2}=0 \) si \( |z_1|=|z_2|=|z_3| \), atunci \( |z_1^{3}+z_2^{3}+z_3^{3}|\leq 7 \).
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
\( z_1=2 \), \( z_2=2(\cos \frac{\pi}{3}+i\sin \frac{\pi}{3}) \), \( z_3=2(\cos \frac{2\pi}{3}+i\sin \frac{2\pi}{3}) \) nu verifica.
Nu cumva modulele sunt egale cu 1?
Asa e enuntul in gazeta.
Insa concluzia devine evidenta.....?...?...
Nu cumva modulele sunt egale cu 1?
Asa e enuntul in gazeta.
Insa concluzia devine evidenta.....?...?...
Last edited by Marius Mainea on Thu May 28, 2009 10:19 pm, edited 2 times in total.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti