Inegalitate cu numere complexe

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Inegalitate cu numere complexe

Post by Mateescu Constantin »

Daca \( z_1,\ z_2,\ z_3\in \mathbb{C} \) sunt astfel incat \( z_1+z_2+z_3\neq 0,\ z_1^{2}+z_2^{2}+z_3^{2}=0 \) si \( |z_1|=|z_2|=|z_3| \), atunci \( |z_1^{3}+z_2^{3}+z_3^{3}|\leq 7 \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( z_1=2 \), \( z_2=2(\cos \frac{\pi}{3}+i\sin \frac{\pi}{3}) \), \( z_3=2(\cos \frac{2\pi}{3}+i\sin \frac{2\pi}{3}) \) nu verifica.

Nu cumva modulele sunt egale cu 1?

Asa e enuntul in gazeta.

Insa concluzia devine evidenta.....?...?...
Last edited by Marius Mainea on Thu May 28, 2009 10:19 pm, edited 2 times in total.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Este problema 22809 din G.M 5-6/1993
Post Reply

Return to “Clasa a X-a”