Fie a, b, c afixele unui triunghi ascutitunghic avand centrul cercului circumscris in originea planului complex. Sa se arate ca:
\( |\frac{a-b}{a+b}|+|\frac{b-c}{b+c}|+|\frac{c-a}{c+a}|=|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}|. \)
Mihai Opincariu
G.M. 3/2009
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Daca \( a=r(\cos t_1+i\sin t_1) \) , \( a=r(\cos t_2+i\sin t_2) \) si \( a=r(\cos t_3+i\sin t_3) \) cu \( t_1\le t_2 \le t_3 \) atunci relatia de demonstrat devine
\( \tan \frac{t_2-t_1}{2}+\tan \frac{t_3-t_2}{2}-\tan \frac{t_3-t_1}{2}=-\tan \frac{t_2-t_1}{2}\cdot\tan \frac{t_3-t_2}{2}\cdot\tan \frac{t_3-t_1}{2} \) care este evident adevarata.
\( \tan \frac{t_2-t_1}{2}+\tan \frac{t_3-t_2}{2}-\tan \frac{t_3-t_1}{2}=-\tan \frac{t_2-t_1}{2}\cdot\tan \frac{t_3-t_2}{2}\cdot\tan \frac{t_3-t_1}{2} \) care este evident adevarata.
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD