G.M. 3/2009

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

G.M. 3/2009

Post by Mateescu Constantin »

Fie a, b, c afixele unui triunghi ascutitunghic avand centrul cercului circumscris in originea planului complex. Sa se arate ca:

\( |\frac{a-b}{a+b}|+|\frac{b-c}{b+c}|+|\frac{c-a}{c+a}|=|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}|. \)

Mihai Opincariu
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Daca \( a=r(\cos t_1+i\sin t_1) \) , \( a=r(\cos t_2+i\sin t_2) \) si \( a=r(\cos t_3+i\sin t_3) \) cu \( t_1\le t_2 \le t_3 \) atunci relatia de demonstrat devine

\( \tan \frac{t_2-t_1}{2}+\tan \frac{t_3-t_2}{2}-\tan \frac{t_3-t_1}{2}=-\tan \frac{t_2-t_1}{2}\cdot\tan \frac{t_3-t_2}{2}\cdot\tan \frac{t_3-t_1}{2} \) care este evident adevarata.
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Post by opincariumihai »

Din topicul de mai sus ar rezulta ca problema este adevarata si daca numerele sunt afixele unui triunghi obtuzunghic, ceea ce este fals. Exista deci o scapare, dar nu-mi dau seama unde.
Autorul
Post Reply

Return to “Clasa a X-a”