1) Sa se determine a si b intregi astfel incat ecuatia \( (ax-b)^2+(bx-a)^2=x \) sa aiba o radacina intreaga.
M. Becheanu
2) Fie ecuatia \( x^2-(a+b)x+a^2+b^2=\frac{1}{2} \), unde \( a, b\in\mathbb{R}. \)
a) Sa se arate ca ecuatia are cel putin o radacina intreaga daca si numai daca \( a^2+b^2=\frac{1}{2} \).
b) Sa se determine a si b astfel incat ambele radacini sa fie intregi.
L. Panaitopol
Ecuatii de gr II
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
1) \( a=b=\pm1 \)
Intr-adevar ecuatia este echivalenta cu \( (a^2+b^2)-(4ab+1)x+(a^2+b^2)=0 \) cu discriminantul \( \Delta =[1-2(a-b)^2]\cdot[1+2(a+b)^2]\ge 0 \) de unde \( a=b \)
Inlocuind in ecuatie obtinem \( 2a^2=\frac{x}{(x-1)^2}\in\mathbb{Z} \) de unde \( x=2 \) si concluzia.
2)
a) Egalitatea se scrie \( (\frac{x}{2}-a)^2+(\frac{x}{2}-b)^2+\frac{x^2}{2}=\frac{1}{2} \) si de aici preasupunand ca x este intreg rezulta \( x=\pm1 \) si \( a^2+b^2=\frac{1}{2} \)
Reciproc , evident.
b)
Intr-adevar ecuatia este echivalenta cu \( (a^2+b^2)-(4ab+1)x+(a^2+b^2)=0 \) cu discriminantul \( \Delta =[1-2(a-b)^2]\cdot[1+2(a+b)^2]\ge 0 \) de unde \( a=b \)
Inlocuind in ecuatie obtinem \( 2a^2=\frac{x}{(x-1)^2}\in\mathbb{Z} \) de unde \( x=2 \) si concluzia.
2)
a) Egalitatea se scrie \( (\frac{x}{2}-a)^2+(\frac{x}{2}-b)^2+\frac{x^2}{2}=\frac{1}{2} \) si de aici preasupunand ca x este intreg rezulta \( x=\pm1 \) si \( a^2+b^2=\frac{1}{2} \)
Reciproc , evident.
b)
Last edited by Marius Mainea on Wed Jan 27, 2010 10:52 pm, edited 4 times in total.