Ecuatie trigonometrica

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
elena_romina
Euclid
Posts: 40
Joined: Sat Nov 15, 2008 12:15 pm

Ecuatie trigonometrica

Post by elena_romina »

Rezolvati ecuatia:
\( sin^nx+cos^nx=1,\ n\in N \).
Last edited by elena_romina on Fri Feb 27, 2009 9:10 am, edited 1 time in total.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

daca \( n=1 \) avem \( x=k\pi \).
daca \( n=2 \) avem \( x\in\mathbb{R} \).
daca \( n\geq3 \) avem ca \( sin^nx+cos^nx\leq sin^2x+cos^2x=1 \) cu egalitate in \( x=k\pi \).
n-ar fi rau sa fie bine :)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

mihai++ wrote:daca \( n=1 \) avem \( x=k\pi \).
Incearca \( x=\pi \) in ecuatia \( \sin x+\cos x=1\ . \) Nu inteleg de ce unii dintre voi sunt asa de superficiali, atat la redactarea enuntului cat si la rezolvarea unei probleme ...

Repet. Nu exista treaba usoara sau grea, exista doar treaba bine facuta sau prost facuta.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Da, e \( x=(2k+1/2)\pi \) sau \( x=2k\pi \) pt \( n=1 \).
n-ar fi rau sa fie bine :)
User avatar
elena_romina
Euclid
Posts: 40
Joined: Sat Nov 15, 2008 12:15 pm

Post by elena_romina »

Dar pentru x in cadranul II, \( sin^nx+cos^nx\leq sin^2x+cos^2x=1 \) nu mai este adevarata.
Post Reply

Return to “Clasa a X-a”