Trei numere complexe cu modulul sumei egal cu 1 sau 2

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Trei numere complexe cu modulul sumei egal cu 1 sau 2

Post by mihai++ »

Fie \( z_1,z_2,z_3\in\mathbb{C},\ |z_1|=|z_2|=|z_3|=1,\ z_1^3+z_2^3+z_3^3+z_1z_2z_3=0 \). Demonstrati ca \( |z_1+z_2+z_3|\in\{1,2\} \).

Daniel Jinga, OLM Arges
n-ar fi rau sa fie bine :)
andy crisan
Pitagora
Posts: 56
Joined: Sun Dec 28, 2008 5:50 pm
Location: Pitesti

Post by andy crisan »

Mie din calcule imi iese doar ca \( |z_{1}+z_{2}+z_{3}|=2 \). Acum postez solutia mea si astept sa vad de ce nu-mi da si 1.

Conjugam relatia din enunt si prin aducere la acelasi numitor obtinem \( z_{1}^{3}z_{2}^{3}+z_{2}^{3}z_{3}^{3}+z_{3}^{3}z_{1}^{3}+z_{1}^{2}z_{2}^{2}z_{3}^{2}=0\Leftrightarrow z_{1}^{3}z_{2}^{3}+z_{2}^{3}z_{3}^{3}+z_{3}^{3}z_{1}^{3}=-z_{1}^{2}z_{2}^{2}z_{3}^{2}\ (1) \).
Din relatia din eununt obtinem \( z_{1}^{3}+z_{2}^{3}+z_{3}^{3}=-z_{1}z_{2}z_{3} \). Ridicam la patrat aceasta ultima relatie si folosind \( (1) \) obtinem ca \( z_{1}^{6}+z_{2}^{6}+z_{3}^{6}=3z_{1}^{2}z_{2}^{2}z_{3}^{2}\Leftrightarrow (z_{1}^{2}+z_{2}^{2}+z_{3}^{2})(z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2})=0 \)\( \Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \) sau \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \).

Cazul 1. Daca \( z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \) \( \Rightarrow \) (fiind o problema cunoscuta) \( |z_{1}+z_{2}+z_{3}|=2 \).

Cazul 2. Daca \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \), atunci \( z_{1}^{2},z_{2}^{2},z_{3}^{2} \) sunt afixele varfurilor unui triunghi echilateral cu centrul in originea sistemului de axe \( \Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \), acest caz reducandu-se la cazul precedent \( \Rightarrow |z_{1}+z_{2}+z_{3}|=2 \)
Sorin Ulmeanu
Posts: 1
Joined: Tue Feb 24, 2009 10:47 am
Location: PITESTI

Post by Sorin Ulmeanu »

INCEARCA SA AJUNGI LA UN PRODUS EGAL CU ZERO, DE TIPUL (Z1 LA CUB +Z2 LA CUB)(Z2 LA CUB+Z3 LA CUB)(Z3 LA CUB + Z1 LA CUB)=0

DACA AJUNGI AICI ANUNTA-MA!
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Fie \( s=z_1+z_2+z_3,\ q=z_1z_2+z_2z_3+z_3z_1,\ p=z_1z_2z_3 \).
Din relatia initiala si conjugata ei obtinem :
\( s^3-3qs=-4p \)
\( \frac{q^3}{p}-3qs=-4p \)
de unde avem ca \( s^3=\frac{q^3}{p}\Rightarrow \frac{s^3}{p}=|s|^3 \) caci \( |s|^2=s\overline{s}=\frac{sq}{p} \) si acum daca impartim prima relatie la \( p \):
\( |s|^3-3|s|^2+4=0\Leftrightarrow (|s|+1)(|s|-2)^2=0 \) de unde \( |s|=2.
\)


Am gresit acolo cand am scos o radacina patratica:
\( \frac{s^3}{p}=\pm |s|^3 \) si rezolvand ecuatia \( -|s|^3-3|s|^2+4=0\Leftrightarrow (|s|-1)(|s|+2)^2=0\Rightarrow |s|=1. \)
n-ar fi rau sa fie bine :)
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

andy crisan wrote:Cazul 2. Daca \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \), atunci \( z_{1}^{2},z_{2}^{2},z_{3}^{2} \) sunt afixele varfurilor unui triunghi echilateral cu centrul in originea sistemului de axe
Asta e doar partial adevarat! Mai avem inca o posibilitate: \( z_1^2=z_2^2=z_3^2 \).
Last edited by bae on Fri Feb 27, 2009 10:09 pm, edited 2 times in total.
andy crisan
Pitagora
Posts: 56
Joined: Sun Dec 28, 2008 5:50 pm
Location: Pitesti

Post by andy crisan »

Aveti dreptate: analizand acest ultim caz obtinem ca doua dintre numere sunt opuse (se arata usor ca toate nu pot fi egale) \( \Rightarrow \) \( |z_{1}+z_{2}+z_{3}|=|z_{1}|=1 \).
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: Trei numere complexe cu modulul sumei egal cu 1 sau 2

Post by Virgil Nicula »

EN18. \( \ \ \ \left\{\ z_1\ ,\ z_2\ ,\ z_3\ \right\}\ \subset\ \mathbb{C}\ \ \wedge\ \ \left\|\ \begin{array}{c}
|z_1|=|z_2|=|z_3|=1\\\\\\
z_1^3+z_2^3+z_3^3+z_1z_2z_3=0\end{array}\ \right\|\ \Longrightarrow\ |z_1+z_2+z_3|\ \in\ \{\ 1\ ,\ 2\ \}\ . \)
PR18. \( \ \ \ \frac {z_1}{u}=\frac {z_2}{v}=\frac {z_3}{1}=\frac {z_1+z_2+z_3}{u+v+1}\ \Longrightarrow\ \left\|\ \begin{array}{c}
|u|=|v|=1\\\\\\\\
u^3+v^3+1+uv=0\ (1)\\\\\\\\
\left|z_1+z_2+z_3\right|=|u+v+1|\end{array}\ \right\|\ . \)


\( (1)\ \ \wedge\ \ \overline u=\frac 1u\ \ \wedge\ \ \overline v=\frac 1v\ \Longrightarrow\ u^3+v^3+u^3v^3+u^2v^2=0\ (2)\ . \)

\( (1)\ \ \wedge\ \ (2)\ \Longrightarrow\ 1+uv=u^2v^2(1+uv)=-\left(u^3+v^3\right)\ \Longrightarrow \)

\( (1+uv)^2(1-uv)=0\ \ \wedge\ \ \left(u^3+v^3\right)+(1+uv)=0\ . \)

\( \odot\ \ uv=1\ \wedge\ \left(u^3+v^3\right)+2=0\ \Longrightarrow\ (u+v)^3-3(u+v)+2=0\ \Longrightarrow\ u+v=1\ \vee\ u+v=-2\ \Longrightarrow \)

\( u+v+1\in\{2,-1\}\ \Longrightarrow\ |u+v+1|\in \{1,2\}\ \Longrightarrow\ \left|z_1+z_2+z_3\right|\in\{1,2\}\ . \)

\( \odot\ \ uv=-1\ \wedge\ u^3+v^3=0\ \Longrightarrow\ (u+v)^3+3(u+v)=0\ \Longrightarrow\ u+v\in\left\{0,\pm i\sqrt 3\right\}\ \Longrightarrow \)

\( u+v+1\in \left\{1,1\pm i\sqrt 3\right\}\ \Longrightarrow\ |u+v+1|\in\{1,2\}\ \Longrightarrow\ \left|z_1+z_2+z_3\right|\in\{1,2\}\ . \)
\( \left\|\ \begin{array}{c}
|u|=|v|=1\\\\\\
u^3+v^3+1+uv=0\end{array}\ \right\|\ \Longrightarrow\ u+v\ \in\ \left\{\ -2\ ,\ 1\ ,\ 0\ ,\ \pm i\sqrt 3\ \right\}\ . \)
\( \left\{\ \begin{array}{c}
u+v=1\\\\\\
uv=1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=-2\\\\\\
uv=1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=0\\\\\\
uv=-1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=i\sqrt 3\\\\\\
uv=-1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=-i\sqrt 3\\\\\\
uv=-1\end{array}\ \ . \)
Last edited by Virgil Nicula on Sat Feb 28, 2009 2:28 pm, edited 3 times in total.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

OFF-topic. In general in viata este mai usor sa gresesti decat sa intelegi unde si de ce ai gresit.
Si in matematica se poate intampla sa gresesti, insa astfel apare o noua problema
- descoperirea greselii - care te proiecteaza spre alte metode sau chiar extinderea teoriei.
Cu alte cuvinte, greseala in matematica uneori este benefica. Insa aici in noua problema
aparuta ai "dezavantajul" ca trebuie sa te descurci singur, cum de altfel s-a si intamplat.
Post Reply

Return to “Clasa a X-a”