Fie \( z_1,z_2,z_3\in\mathbb{C},\ |z_1|=|z_2|=|z_3|=1,\ z_1^3+z_2^3+z_3^3+z_1z_2z_3=0 \). Demonstrati ca \( |z_1+z_2+z_3|\in\{1,2\} \).
Daniel Jinga, OLM Arges
Trei numere complexe cu modulul sumei egal cu 1 sau 2
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
Trei numere complexe cu modulul sumei egal cu 1 sau 2
n-ar fi rau sa fie bine 
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti
Mie din calcule imi iese doar ca \( |z_{1}+z_{2}+z_{3}|=2 \). Acum postez solutia mea si astept sa vad de ce nu-mi da si 1.
Conjugam relatia din enunt si prin aducere la acelasi numitor obtinem \( z_{1}^{3}z_{2}^{3}+z_{2}^{3}z_{3}^{3}+z_{3}^{3}z_{1}^{3}+z_{1}^{2}z_{2}^{2}z_{3}^{2}=0\Leftrightarrow z_{1}^{3}z_{2}^{3}+z_{2}^{3}z_{3}^{3}+z_{3}^{3}z_{1}^{3}=-z_{1}^{2}z_{2}^{2}z_{3}^{2}\ (1) \).
Din relatia din eununt obtinem \( z_{1}^{3}+z_{2}^{3}+z_{3}^{3}=-z_{1}z_{2}z_{3} \). Ridicam la patrat aceasta ultima relatie si folosind \( (1) \) obtinem ca \( z_{1}^{6}+z_{2}^{6}+z_{3}^{6}=3z_{1}^{2}z_{2}^{2}z_{3}^{2}\Leftrightarrow (z_{1}^{2}+z_{2}^{2}+z_{3}^{2})(z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2})=0 \)\( \Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \) sau \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \).
Cazul 1. Daca \( z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \) \( \Rightarrow \) (fiind o problema cunoscuta) \( |z_{1}+z_{2}+z_{3}|=2 \).
Cazul 2. Daca \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \), atunci \( z_{1}^{2},z_{2}^{2},z_{3}^{2} \) sunt afixele varfurilor unui triunghi echilateral cu centrul in originea sistemului de axe \( \Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \), acest caz reducandu-se la cazul precedent \( \Rightarrow |z_{1}+z_{2}+z_{3}|=2 \)
Conjugam relatia din enunt si prin aducere la acelasi numitor obtinem \( z_{1}^{3}z_{2}^{3}+z_{2}^{3}z_{3}^{3}+z_{3}^{3}z_{1}^{3}+z_{1}^{2}z_{2}^{2}z_{3}^{2}=0\Leftrightarrow z_{1}^{3}z_{2}^{3}+z_{2}^{3}z_{3}^{3}+z_{3}^{3}z_{1}^{3}=-z_{1}^{2}z_{2}^{2}z_{3}^{2}\ (1) \).
Din relatia din eununt obtinem \( z_{1}^{3}+z_{2}^{3}+z_{3}^{3}=-z_{1}z_{2}z_{3} \). Ridicam la patrat aceasta ultima relatie si folosind \( (1) \) obtinem ca \( z_{1}^{6}+z_{2}^{6}+z_{3}^{6}=3z_{1}^{2}z_{2}^{2}z_{3}^{2}\Leftrightarrow (z_{1}^{2}+z_{2}^{2}+z_{3}^{2})(z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2})=0 \)\( \Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \) sau \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \).
Cazul 1. Daca \( z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \) \( \Rightarrow \) (fiind o problema cunoscuta) \( |z_{1}+z_{2}+z_{3}|=2 \).
Cazul 2. Daca \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \), atunci \( z_{1}^{2},z_{2}^{2},z_{3}^{2} \) sunt afixele varfurilor unui triunghi echilateral cu centrul in originea sistemului de axe \( \Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \), acest caz reducandu-se la cazul precedent \( \Rightarrow |z_{1}+z_{2}+z_{3}|=2 \)
-
Sorin Ulmeanu
- Posts: 1
- Joined: Tue Feb 24, 2009 10:47 am
- Location: PITESTI
Fie \( s=z_1+z_2+z_3,\ q=z_1z_2+z_2z_3+z_3z_1,\ p=z_1z_2z_3 \).
Din relatia initiala si conjugata ei obtinem :
\( s^3-3qs=-4p \)
\( \frac{q^3}{p}-3qs=-4p \)
de unde avem ca \( s^3=\frac{q^3}{p}\Rightarrow \frac{s^3}{p}=|s|^3 \) caci \( |s|^2=s\overline{s}=\frac{sq}{p} \) si acum daca impartim prima relatie la \( p \):
\( |s|^3-3|s|^2+4=0\Leftrightarrow (|s|+1)(|s|-2)^2=0 \) de unde \( |s|=2.
\)
Am gresit acolo cand am scos o radacina patratica:
\( \frac{s^3}{p}=\pm |s|^3 \) si rezolvand ecuatia \( -|s|^3-3|s|^2+4=0\Leftrightarrow (|s|-1)(|s|+2)^2=0\Rightarrow |s|=1. \)
Din relatia initiala si conjugata ei obtinem :
\( s^3-3qs=-4p \)
\( \frac{q^3}{p}-3qs=-4p \)
de unde avem ca \( s^3=\frac{q^3}{p}\Rightarrow \frac{s^3}{p}=|s|^3 \) caci \( |s|^2=s\overline{s}=\frac{sq}{p} \) si acum daca impartim prima relatie la \( p \):
\( |s|^3-3|s|^2+4=0\Leftrightarrow (|s|+1)(|s|-2)^2=0 \) de unde \( |s|=2.
\)
Am gresit acolo cand am scos o radacina patratica:
\( \frac{s^3}{p}=\pm |s|^3 \) si rezolvand ecuatia \( -|s|^3-3|s|^2+4=0\Leftrightarrow (|s|-1)(|s|+2)^2=0\Rightarrow |s|=1. \)
n-ar fi rau sa fie bine 
Asta e doar partial adevarat! Mai avem inca o posibilitate: \( z_1^2=z_2^2=z_3^2 \).andy crisan wrote:Cazul 2. Daca \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \), atunci \( z_{1}^{2},z_{2}^{2},z_{3}^{2} \) sunt afixele varfurilor unui triunghi echilateral cu centrul in originea sistemului de axe
Last edited by bae on Fri Feb 27, 2009 10:09 pm, edited 2 times in total.
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Re: Trei numere complexe cu modulul sumei egal cu 1 sau 2
PR18. \( \ \ \ \frac {z_1}{u}=\frac {z_2}{v}=\frac {z_3}{1}=\frac {z_1+z_2+z_3}{u+v+1}\ \Longrightarrow\ \left\|\ \begin{array}{c}EN18. \( \ \ \ \left\{\ z_1\ ,\ z_2\ ,\ z_3\ \right\}\ \subset\ \mathbb{C}\ \ \wedge\ \ \left\|\ \begin{array}{c}
|z_1|=|z_2|=|z_3|=1\\\\\\
z_1^3+z_2^3+z_3^3+z_1z_2z_3=0\end{array}\ \right\|\ \Longrightarrow\ |z_1+z_2+z_3|\ \in\ \{\ 1\ ,\ 2\ \}\ . \)
|u|=|v|=1\\\\\\\\
u^3+v^3+1+uv=0\ (1)\\\\\\\\
\left|z_1+z_2+z_3\right|=|u+v+1|\end{array}\ \right\|\ . \)
\( (1)\ \ \wedge\ \ \overline u=\frac 1u\ \ \wedge\ \ \overline v=\frac 1v\ \Longrightarrow\ u^3+v^3+u^3v^3+u^2v^2=0\ (2)\ . \)
\( (1)\ \ \wedge\ \ (2)\ \Longrightarrow\ 1+uv=u^2v^2(1+uv)=-\left(u^3+v^3\right)\ \Longrightarrow \)
\( (1+uv)^2(1-uv)=0\ \ \wedge\ \ \left(u^3+v^3\right)+(1+uv)=0\ . \)
\( \odot\ \ uv=1\ \wedge\ \left(u^3+v^3\right)+2=0\ \Longrightarrow\ (u+v)^3-3(u+v)+2=0\ \Longrightarrow\ u+v=1\ \vee\ u+v=-2\ \Longrightarrow \)
\( u+v+1\in\{2,-1\}\ \Longrightarrow\ |u+v+1|\in \{1,2\}\ \Longrightarrow\ \left|z_1+z_2+z_3\right|\in\{1,2\}\ . \)
\( \odot\ \ uv=-1\ \wedge\ u^3+v^3=0\ \Longrightarrow\ (u+v)^3+3(u+v)=0\ \Longrightarrow\ u+v\in\left\{0,\pm i\sqrt 3\right\}\ \Longrightarrow \)
\( u+v+1\in \left\{1,1\pm i\sqrt 3\right\}\ \Longrightarrow\ |u+v+1|\in\{1,2\}\ \Longrightarrow\ \left|z_1+z_2+z_3\right|\in\{1,2\}\ . \)
\( \left\{\ \begin{array}{c}\( \left\|\ \begin{array}{c}
|u|=|v|=1\\\\\\
u^3+v^3+1+uv=0\end{array}\ \right\|\ \Longrightarrow\ u+v\ \in\ \left\{\ -2\ ,\ 1\ ,\ 0\ ,\ \pm i\sqrt 3\ \right\}\ . \)
u+v=1\\\\\\
uv=1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=-2\\\\\\
uv=1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=0\\\\\\
uv=-1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=i\sqrt 3\\\\\\
uv=-1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=-i\sqrt 3\\\\\\
uv=-1\end{array}\ \ . \)
Last edited by Virgil Nicula on Sat Feb 28, 2009 2:28 pm, edited 3 times in total.
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
OFF-topic. In general in viata este mai usor sa gresesti decat sa intelegi unde si de ce ai gresit.
Si in matematica se poate intampla sa gresesti, insa astfel apare o noua problema
- descoperirea greselii - care te proiecteaza spre alte metode sau chiar extinderea teoriei.
Cu alte cuvinte, greseala in matematica uneori este benefica. Insa aici in noua problema
aparuta ai "dezavantajul" ca trebuie sa te descurci singur, cum de altfel s-a si intamplat.
Si in matematica se poate intampla sa gresesti, insa astfel apare o noua problema
- descoperirea greselii - care te proiecteaza spre alte metode sau chiar extinderea teoriei.
Cu alte cuvinte, greseala in matematica uneori este benefica. Insa aici in noua problema
aparuta ai "dezavantajul" ca trebuie sa te descurci singur, cum de altfel s-a si intamplat.