Search found 121 matches
- Tue Jun 08, 2010 6:52 pm
- Forum: Chat de voie
- Topic: Baraj Arhimede
- Replies: 0
- Views: 90
Baraj Arhimede
Are cineva idee cand si unde se afiseaza rezultatele de la barajul din iunie de la Arhimede?
- Tue May 04, 2010 1:56 pm
- Forum: Clasa a X-a
- Topic: Functia exponentiala
- Replies: 6
- Views: 256
- Mon Mar 15, 2010 9:07 pm
- Forum: Chat de voie
- Topic: programa ONM
- Replies: 1
- Views: 223
programa ONM
Stie cineva daca la clasa a 11-a pentru ON intra geometria analitica?
- Sun Mar 14, 2010 10:18 pm
- Forum: Etapa Judeteana si a municipiului Bucuresti
- Topic: Subiectele si solutiile de la etapa judetena si finala
- Replies: 6
- Views: 2039
- Thu Mar 04, 2010 2:07 pm
- Forum: Chat de voie
- Topic: Adjuncta unei matrice singulare
- Replies: 0
- Views: 387
Adjuncta unei matrice singulare
Caut niste relatii intre o matrice singulara si adjuncta sa sau reciproca (am gasit ambele denumiri pentru aceeasi notiune).
- Sat Feb 13, 2010 6:30 pm
- Forum: Analiza matematica
- Topic: OLM Dolj Subiectul 1
- Replies: 1
- Views: 338
OLM Dolj Subiectul 1
Fie \( a,b\in \mathbb{R} \) si \( (a_n)_{n\ge 1},(b_n)_{n\ge 1} \) siruri de numere reale convergente la \( a \), respectiv \( b \).
Fie \( \sigma \) o permutare a numerelor naturale {\( 1,2,...,n \)}. Sa se arate ca \( \lim_{n\to\infty}\frac{\sum_{k=1}^n a_k b_{\sigma(k)}}{n}=ab \).
Fie \( \sigma \) o permutare a numerelor naturale {\( 1,2,...,n \)}. Sa se arate ca \( \lim_{n\to\infty}\frac{\sum_{k=1}^n a_k b_{\sigma(k)}}{n}=ab \).
- Tue Feb 02, 2010 1:57 pm
- Forum: Algebra
- Topic: Sistem matriceal
- Replies: 4
- Views: 1111
- Thu May 21, 2009 5:43 pm
- Forum: Inegalitati
- Topic: Inegalitate conditionata, G.M. 2/2009
- Replies: 1
- Views: 395
- Sun May 10, 2009 12:53 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate conditionata
- Replies: 3
- Views: 358
- Fri May 08, 2009 12:10 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate conditionata
- Replies: 3
- Views: 358
Inegalitate conditionata
Fie \( a,b,c \) trei numere reale strict pozitive cu media aritmetica \( 4\sqrt{2}-1 \).
Demonstrati ca \( \sum\frac{1}{a^2+b}\ge 1 \).
Demonstrati ca \( \sum\frac{1}{a^2+b}\ge 1 \).
- Wed May 06, 2009 4:56 pm
- Forum: Clasa a X-a
- Topic: Inegalitate trigonometrica
- Replies: 1
- Views: 341
- Sun May 03, 2009 11:43 am
- Forum: Clasa a IX-a
- Topic: Inegalitate trigonometrica
- Replies: 2
- Views: 266
- Tue Apr 28, 2009 12:29 pm
- Forum: Clasa a X-a
- Topic: Inegalitate cu numere complexe
- Replies: 2
- Views: 460
Inegalitate cu numere complexe
Fie \( z_1,z_2,z_3,z_4\in\mathbb{C} \).
Demonstrati ca \( |z_1-z_2||z_3-z_4|+|z_2-z_3||z_4-z_1|\ge |z_1-z_3||z_4-z_2| \).
Cand are loc egalitatea?
Demonstrati ca \( |z_1-z_2||z_3-z_4|+|z_2-z_3||z_4-z_1|\ge |z_1-z_3||z_4-z_2| \).
Cand are loc egalitatea?
- Tue Apr 28, 2009 10:45 am
- Forum: Clasa a X-a
- Topic: Problema by Marcel Tena
- Replies: 0
- Views: 330
Problema by Marcel Tena
Consideram afirmatiile: (S) Pentru orice numar n\in\mathbb{N},n\ge 117 , in intervalul ( n,n+sqrt{n} ) exista cel putin un numar prim. (A) Pentru orice p prim, p\neq 13 , in intervalul ( p,p^2 ) nu exista doua numere prime consecutive q si r astfel incat r-q=p+1 . Sa se demonstreze implicatia (S)\Ri...
- Tue Apr 28, 2009 10:26 am
- Forum: Clasa a X-a
- Topic: CO:4991, G.M. 12/2008
- Replies: 1
- Views: 399
CO:4991, G.M. 12/2008
Sa se rezolve sistemul in multimea numerelor reale:
\( 2^x+3^y=12 \) si \( 3^x+3^y=36. \)
\( 2^x+3^y=12 \) si \( 3^x+3^y=36. \)
- Tue Apr 28, 2009 9:49 am
- Forum: Chat de voie
- Topic: Gazeta Matematica
- Replies: 0
- Views: 475
Gazeta Matematica
Am si eu o intrebare in legatura cu propunerea de probleme la gazeta sau trimiterea de articole. Ce conditii sunt? Daca sunt elev, pot trimite probleme sau articole? Cum se procedeaza? Daca trimit o problema, trebuie sa scriu si clasa la care as vrea sa apara ?
- Sat Apr 25, 2009 1:25 pm
- Forum: Clasa a X-a
- Topic: Concursul "Ion Ciolac" problema 2
- Replies: 1
- Views: 395
Concursul "Ion Ciolac" problema 2
a) Demonstrati ca \( \sqrt[n]{n}<\sqrt{2},\forall n\in\mathbb{N},n\ge 5 \).
b) Demonstrati ca \( x_n<n\cdot \log_n{2},\forall n\in\mathbb{N},n\ge 5, \) unde \( x_n={{{{{{\sqrt[n]{n}}^{\sqrt[n]{n}}}^{\sqrt[n]{n}}^{.}}^{.}}^{\sqrt[n]{n}}}} \), numarul radicalilor fiind n.
b) Demonstrati ca \( x_n<n\cdot \log_n{2},\forall n\in\mathbb{N},n\ge 5, \) unde \( x_n={{{{{{\sqrt[n]{n}}^{\sqrt[n]{n}}}^{\sqrt[n]{n}}^{.}}^{.}}^{\sqrt[n]{n}}}} \), numarul radicalilor fiind n.