Functia exponentiala

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
andreiCNC
Posts: 3
Joined: Sun Jan 18, 2009 6:55 pm

Functia exponentiala

Post by andreiCNC »

1.\(
\2^x > {x^2}\forall x > 5\
\)


2.\(
\2^x > {x^3}\forall x > 10\


\)


E trecuta la clasa a 10 a, dar se accepta orice fel de rezolvare. Eu sunt clasa a 12 a acum.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Rezolvarea e de clasa a 10-a... Pur si simplu logaritmezi expresiile si studiezi monotonia functiei \( \frac{x}{\ln x} \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
andreiCNC
Posts: 3
Joined: Sun Jan 18, 2009 6:55 pm

Post by andreiCNC »

deci am \( \ln {2^x} > \ln {x^2} \)

apoi fac o functie din ea de gen \( \ln {2^x} - \ln {x^2} > 0 \)

asa ? si apoi cum o aduc la x/lnx ?
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

succes la bac atunci :)).
\( \frac{x}{\ln x}>\frac{2}{\ln 2} \)
n-ar fi rau sa fie bine :)
andreiCNC
Posts: 3
Joined: Sun Jan 18, 2009 6:55 pm

Post by andreiCNC »

\( \frac{x}{\ln x}>\frac{3}{\ln 2} \)


doar ca mie mi`a dat f(x) > f(e)

dar 3/ln2 > e

ori am gresit undeva, ori a 2 a nu iese la fel


p.s. mersi mult pentru ajutor pana acum
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

\( \frac{x}{\ln x}>\frac{10}{\ln 10}>\frac{3}{\ln 2} \), ultima inegalitate fiind echivalenta cu \( 1024>1000 \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

Folosim [x]<x<[x]+1, notam [x]=k si apoi inductie
Post Reply

Return to “Clasa a X-a”