Search found 8 matches

by Marius Damian
Thu Oct 23, 2008 8:06 pm
Forum: Matematica distractiva
Topic: Probleme de logica
Replies: 8
Views: 1346

miruna.lazar wrote:cum ti-ai dat seama , marius ? e corect cum spui tu
Nu e nimic de explicat; pur si simplu, mi-am dat seama. :wink:
by Marius Damian
Mon Oct 20, 2008 2:49 pm
Forum: Matematica distractiva
Topic: Probleme de logica
Replies: 8
Views: 1346

Pentru problema 4: punem un S in fata lui IX si obtinem "SIX". :D
by Marius Damian
Sun Jul 20, 2008 4:54 pm
Forum: Algebra
Topic: Subiect titularizare 2008
Replies: 2
Views: 1506

Multumesc pentru solutia a doua aleph. Si eu am rezolvat cu prima metoda, dar eram convins ca mai exista si alte metode.
by Marius Damian
Sun Jul 20, 2008 12:44 pm
Forum: Algebra
Topic: Subiect titularizare 2008
Replies: 2
Views: 1506

Subiect titularizare 2008

Sa se arate ca polinomul \( f=X^n+2X^{n-1}+3X^{n-2}+...+nX-1 \), unde \( n\in \mathbb{N}, n \geq 3 \), este ireductibil in \( \mathbb{Z}[X] \).

Ma intereseaza sa vad cel putin doua solutii.
by Marius Damian
Sat Jul 12, 2008 9:05 pm
Forum: Clasa a IX-a
Topic: Inegalitate by Vasile Popa
Replies: 1
Views: 531

\( p-\frac{kp-1}{n}>\frac{1}{k}, \forall k= \overline{1,n}. \)
by Marius Damian
Sat Jul 12, 2008 8:57 pm
Forum: Clasa a X-a
Topic: O problema by Andrei Vrajitoarea
Replies: 3
Views: 1141

Re: O problema by Andrei Vrajitoarea

Se considera numerele complexe z_1,z_2,z_3 . Daca z=\overline{z_1}z_2+\overline{z_2}z_3+\overline{z_3}z_1 , aratati ca: Re(z)-\sqrt{3}\cdot Im(z)\leq |z_1|^2+|z_2|^2+|z_3|^2 Notam \omega = \frac{1+i\sqrt{3}}{2} si folosim formulele Re(z)=\frac{z+\overline{z}}{2} , Im(z)=\frac{z-\overline{z}}{2i} . ...
by Marius Damian
Wed Jun 18, 2008 6:16 am
Forum: Clasa a IX-a
Topic: Inegalitate conditionata de x+y+z=xyz (own)
Replies: 1
Views: 459

Notam \frac{1}{xy}=a>0 , \frac{1}{yz}=b>0 , \frac{1}{zx}=c>0 . Inegalitatea din enunt se scrie echivalent \sum{\frac{b+c}{a(a+b)(a+c)}}\geq\frac{27}{2} , conditionata de a+b+c=1 . Folosind inegalitatile Cauchy-Schwarz si AM-GM, avem \sum{\frac{b+c}{a(a+b)(a+c)}}=\frac{1}{(a+b)(b+c)(c+a)}\cdot\sum{\f...
by Marius Damian
Thu Jun 12, 2008 8:19 am
Forum: Clasa a VII-a
Topic: Conditie pentru ABC isoscel
Replies: 5
Views: 1861

O solutie la nivelul clasei a VII-a (chiar a VI-a)

Construim EF\|| MN,\ E\in AB,\ F\in AC,\ O\in EF. Daca O este mijlocul lui (EF) , concluzia problemei este imediata. Presupunem, prin absurd, ca O nu este mijlocul lui (EF) . Fie atunci P izotomicul punctului O pe latura [EF] a triunghiului AEF si S punctul de intersectie a dreptelor NP si AB . Pres...

Go to advanced search