Search found 7 matches

by Kunihiko Chikaya
Wed Feb 04, 2009 9:03 am
Forum: Analiza matematica
Topic: Calcul de integrala 7
Replies: 2
Views: 444

Calcul de integrala 7

Calculeze

\( \displaystyle \left|\frac {\int_0^{\frac {\pi}{2}} (x\cos x + 1)e^{\sin x}\ dx}{\int_0^{\frac {\pi}{2}} (x\sin x - 1)e^{\cos x}\ dx}\right|. \)
by Kunihiko Chikaya
Wed Feb 04, 2009 8:20 am
Forum: Analiza matematica
Topic: Seria lui Euler zeta(2)=pi^2/6 via integrala din cos
Replies: 1
Views: 615

You can see the solution here.
by Kunihiko Chikaya
Thu Feb 07, 2008 8:48 pm
Forum: Analiza matematica
Topic: Limita unui sir integral 2
Replies: 0
Views: 462

Limita unui sir integral 2

Fie \( I_n = \int_1^{1 + \frac {1}{n}}\{[(x + 1)\ln x + 1]e^{x(e^{x}\ln x + 1)} + n\}dx \ (n = 1,2,\cdots). \)

Calculati \( \lim_{n\to\infty}I_n^{n}. \)

Kunihiko Chikaya
by Kunihiko Chikaya
Mon Feb 04, 2008 2:54 am
Forum: Clasa a 12-a
Topic: Calcul de integrala 4
Replies: 1
Views: 830

Calcul de integrala 4

Sa se calculeze

\( \int_0^1 (1+2008x^{2008})e^{x^{2008}}dx. \)

Kunihiko Chikaya
by Kunihiko Chikaya
Mon Feb 04, 2008 1:59 am
Forum: Analiza matematica
Topic: Aproximare pentru o integrala
Replies: 2
Views: 1106

\( \int_0^1 e^{x^2}dx=\int_0^1 \frac{xe^{x^2}}{x}dx=\left[\frac{e^{x^2}}{2x}\right]_0^1 +\frac 12\int_0^1 \frac{e^{x^2}}{x^2}dx>\frac{1}{2}e. \)
by Kunihiko Chikaya
Sun Feb 03, 2008 8:22 pm
Forum: Analiza matematica
Topic: Calcul de integrala cu functia exponentiala, sin si cos
Replies: 2
Views: 1275

\( \int_0^{\pi} e^x\sin x\cos x\sin 2x\cos 2x dx \)

\( =\frac{1}{4}\int_0^{\pi} e^x\sin 2x\sin 4x dx \)

\( =\frac{1}{8}\int_0^{\pi} e^x(\cos 2x-\cos 6x)dx \)

\( =\frac{1}{8}\left[\frac{1}{5}e^x(\cos 2x+2\sin 2x)-\frac{1}{37}e^x(\cos 6x+6\sin 6x)\right]_0^{\pi} \)

\( =\frac{4}{185}(e^{\pi}-1) \)
by Kunihiko Chikaya
Sun Feb 03, 2008 7:49 pm
Forum: Analiza matematica
Topic: Concurs "Teodor Topan" - problema 2
Replies: 1
Views: 616

I_0=\int \frac{1}{\sqrt{x^2+1}}\ dx=\ln |x+\sqrt{x^2+1}|+C. I_1=\int \frac{x}{\sqrt{x^2+1}}\ dx=\frac{1}{2}\int \frac{1}{\sqrt{x^2+1}}d(x^2+1)=\sqrt{x^2+1}+C. I_2=\int \frac{x^2}{\sqrt{x^2+1}}\ dx=\int \frac{(x^2+1)-1}{\sqrt{x^2+1}}\ dx =\int \left(\sqrt{x^2+1}-\frac{1}{\sqrt{x^2+1}}\right)\ dx =\i...

Go to advanced search